AGCO (Massey-Gleaner A & R-Challenger), Laverda, NH (TR/TX & CR/CX), JD (9000 SRS-50 SRS-60 SRS), CAT/CLAAS, CASE/IH, DON 1500, AND Acros ONLY.
Important Notice

This manual covers AGCO (Massey-Gleaner A & R-Challenger), Laverda, NH (TR/TX & CR/CX), JD (9000 SRS-50 SRS-60 SRS), CAT/CLAAS, CASE/IH, DON 1500, and Acros ONLY.

Review the sections of this manual regarding adjustments, settings, leveling, and table height before attempting to operate this swather.

Without proper adjustment, damage to the swather may occur.

Please wash this equipment after transporting

Honey Bee Manufacturing will not be responsible for any paint deterioration resulting from salt or harsh chemical corrosion if this equipment is not properly washed after transport. Use a mild soap solution, then rinse thoroughly.

If this equipment is stored near salted roadways through the winter months, it should be cleaned each spring.
1.1 - Purchase Information

Dealers Name: ___
Address: ___
Phone: () ___
Purchase Date: ___
Model: ___
Serial Number: ___
Delivery Date: ___

<table>
<thead>
<tr>
<th>Date</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Improvements:
Honey Bee Manufacturing Limited is continually striving to improve its products. We reserve the right to make improvements or changes when it becomes practical and possible to do so, without incurring any obligation to make changes or additions to the equipment sold previously.
1.2 - Warranty

Honey Bee Manufacturing Ltd. (Honey Bee) warrants your new Grain Belt Header to be free of defects in material and workmanship, under normal use and service. Obligations under this warranty shall extend for a period of 1 year (12 months) following the date of first use to the original purchaser and shall be limited to, at the option of Honey Bee, replacement or repair of any parts found, upon inspection by Honey Bee, to be defective.

Warranty Claims
The purchaser claiming under this warranty shall report a warranty claim to his Authorized Dealer. The dealer shall complete the claim, on the prescribed form, for inspection by an authorized company representative. Warranty claims must be made within 60 days of warranty expiration on the Honey Bee Manufacturing Ltd Claim Form (CFI).

Limitations of Liability
This warranty is expressly in lieu of all other warranties expressed or implied and all other obligations or liabilities on our part of any kind or character, including liabilities for alleged representations or negligence. We neither assume nor authorize any person to assume, on our behalf, any liability in connection with the subsequent sale of the Grain Belt Header.

This warranty shall not apply to any Swather table which has been altered outside the factory in any way so as in the judgment of Honey Bee to affect its operation or reliability, or which has been subject to misuse, neglect, or accident.

Operator’s Manual
The purchaser acknowledges having received training in the safe operation of the Swather and further acknowledges that Honey Bee does not assume any liability resulting from the operation of the Swather in any manner other than described in this manual.
Contents

1.1 - Purchase Information 3
1.2 - Warranty 5
2 - Safety 12
 Safety Terms 12
 Shields 12
 Hydraulic Safety 13
 Draper Support Bars 13
 Operation and Maintenance Requirements 14
Watch for this symbol, both in this manual and on the header. It will identify hazards that could cause injury or death. 14
 General Safety 14
 Operating Safety – Good Practices 15
 Maintenance Safety 15
 Transport Safety 16
 Before Transport Checklist 16
 During Transport Checks 17
 In-Field Checks 17
 Storage 17
 Safety Decal Locations 18
 Safety-Related Labels 20
Mounting Instructions 23
 Terminology 23
 Combine Preparation 24
 Grain Belt Header Preparation 24
 Positioning Header on Feeder Housing: 25
 Sub frame Adjustment 27
 Restrainer Chains 27
Coupling 27
 Coupling the Drive Shaft 28
 Connecting Hydraulic Hoses: 28
 Electrical Connections 28
Leveling 29
 Leveling 29
 Forward Angle – Manual Adjustment 29
 Leveling and Table Height Adjustment 30
 Floatation 31
 Example A: 31
 Example B: 32
 Example C: 32
 Example D: 33
Removal of Transport Equipment 34
 Standard Transport Option – Convert to Field Operation 34
 Removing and Storing the Hitch 35
Integral Axle 36
 Integral Axle - Convert to Field Operation 36
Caster Gauge Wheels 38
 Gauge Wheel Height Adjustment 39
 The Gauge Wheel Assembly is Heavy! 39
Mounting Checklist 40
 Pre-Start Checklist 41
 Cold Weather Start-up – Temperatures below 10C/50F 41
 Normal Start 42
Cutting System 43
 Knife Removal 44
 Cutting System Maintenance 44
 Guards 44
 Sickle Sections 44
 Replace a Section – Method 1: 45
 Replace a Section – Method 2: 45
 Knife Drive/Knife Head 46
 SCH Connector Bar 47
 Crary Connector Bar 47
 Overlap Kit 48
 Repair Broken Knife Back 49
Maintenance & Lubrication 50
 Lubrication 50
 Lubrication Service Locations - (30' Model, with Ull reel shown.) 51
 Filters 51
 Maintenance 52
 Periodic Checks 53
 Auger Drum Maintenance: 53
 Drapers – Periodic Maintenance: 53
 Replacing Center Bolt in Suspension Springs. 54
Hydraulics 55
 Operating Pressure 55
 The Knife Circuit pressure guage, connected to the relief valve, is mounted to the side of the hydraulic reservoir. It indicates the hydraulic pressure available to the Knife circuit. The Draper circuit pressure...
guage, connected to the Draper Flow Control, is also mounted to the side of the hydraulic reservoir. It indicates the hydraulic pressure available to the Draper circuit. Cold Weather Operation – Temperatures below +10C/+50F High Pressure - Diagnostic Checks If the cutting system seems to be OK, check the following areas: Other Problem Sources Diagnostic Checks Chain Case Assembly Pumps by Combine Check or Adjust Knife Relief Pressure Draper Operating Pressure If the draper pressure is high, check: If a faulty draper motor is suspected: Bleeding Air Out Of Reel Lift Circuit: A: Static Method. B: Alternate method Reel Drive Reel Speed Adjustment Reel Position Hydraulic Fore & Aft Split-Reel Lift Hydraulic Circuit Solid Reel Lift Hydraulic Circuit Reel Arm Leveling and Height Adjustment Reel Height Adjustment Reel Centering Reel Position in Down Crops Reel Position in Standing Crops Universal – UII Pick-Up Reel: Tine Pitch Adjustment Tine pitch must be the same at both ends of the reel. Hart-Carter (HCC) Reel HCC Reel – Tine Pitch Adjustment Lubrication – Reel Shaft Bearings Control Rings (U-II Reels only) Check Points Before Operation: 6 – Draper and Decks Lining Up the Idler Roller Draper Installation Tensioning Spring Tension Indicator If tensioning is still required: Center Feed Auger Standard Adjustments Finger Extension Adjustment Auger Drum Height Adjustment Fore – Aft Adjustment of the Center-Feed Auger Auger Drive Assembly Adjustment Drive Line Adjustment Chain Tension Adjustment Drive Line - Walterscheid Operating the PTO Drive Line Lubrication Coupling the input drive line Drive Line Guard Dis-assembly Drive Line Guard Assembly Replace Cone: Dismounting Draper Table from Combine Preparing For Dismount Quick Dismount Integral Axle Header Dismount Standard Axle Header Dismount Optional Equipment Cross Auger Swath Option Manual Swath Option (3 decks) Draper Extension for Swathing
AGCO Bezels
Configuring the AGCO Bezels
Production Header – Hydraulic Tilt Kit

Troubleshooting
106
Common Problems You May Encounter
Troubleshooting Checklist
Reel

Appendix
114
Appendix A - Hydraulic Fitting Naming Standards
Appendix B - Hydraulic System Schematics
Appendix B-1 - 30' Single Pump - Hydraulic Deck
Appendix B-2 - 30' Single Pump - Hydraulic Deck - Header Driven Reel
Appendix B-3 - 36' Single Pump - Hydraulic Deck
Appendix B-4 - 36'-40'-42' Double Pump - Manual Deck
Appendix B-5 - Double Pump - Standard Deck - Cross Auger
Appendix B-6 - Fore & Aft Assembly - Solid Reel (Combine Driven)
Appendix B-7 - Fore & Aft Assembly - Split Reel (Combine Driven)
Appendix B-8 - Fore & Aft Assembly - Solid Reel (w/Hydraulic Solenoid Kit)
Appendix B-9 - Fore & Aft Assembly - Split Reel (w/Hydraulic Solenoid Kit)
Appendix B-10 - Hydraulic Header Tilt Assembly
Appendix B-11 - Single Reel Drive - (Combine Driven)
Appendix B-12 - 18 to 36 ft - (Combine Driven)
Appendix B-13 - Single Reel Drive
Appendix B-14 - Double Reel Drive - 40 to 42 ft (Combine Driven)
Appendix B-15 - Double Reel Drive - 18-36 ft
Appendix B-16 - Double Reel Drive - 40 - 42 ft
Appendix B-17 - Solid Reel Lift Circuit with Single Reel Drive
Appendix B-18 - Split Reel Lift Circuit
Appendix C - Specifications
2 - Safety

In this manual, the safety conventions used are as follows:

Safety Terms

DANGER
Indicates an imminently hazardous situation that if not avoided, will result in death or serious injury. This signal word is to be limited to the most extreme situations, typically for machine components that, for functional purposes, cannot be guarded.

WARNING
Indicates a potentially hazardous situation that, if not avoided, could result in death or serious injury, and includes hazards that are exposed when guards are removed. It may also be used to alert against unsafe practices.

CAUTION
Indicates a potentially hazardous situation that, if not avoided, may result in minor or moderate injury. It may also be used to alert against unsafe practices.

ATTENTION
Warns of potential damage to the machine if procedures are not followed.

IMPORTANT
Provides instructions to help you avoid unnecessary strain on, or possible damage to the machine.

Shields
Shields are provided to protect you from injury. Make sure they are in place and secured before starting the machine.

NOTE!
Names given here for parts of the swather are those in use at the time of design.

Hydraulic Safety

This machine is powered and run by hydraulic oil under high pressure. Caution must be taken around the machine because high pressure hydraulic fluid can penetrate the skin causing serious injury and possibly death. When looking for a hydraulic leak, always hold a piece of cardboard up to the suspected area. Never use your unprotected hands to locate a leak.

Always wear eye protection, gloves and long sleeve clothing when working near hydraulics. Small leaks can be completely invisible.

You can reduce this hazard by relieving the system pressure before disconnecting hydraulic lines. Once finished, tighten all connections to specifications before re-applying pressure.

If a hydraulic-related accident occurs, see a doctor immediately. Any hydraulic fluid injected into the body must be surgically removed within a few hours or gangrene may result. Doctors unfamiliar with this type of injury should reference a knowledgeable medical source.

Draper Support Bars

Remove the two Draper Support Bars before operation of draper tables! Failure to remove the support bars can result in damage to the product and personal injury.
Operation and Maintenance Requirements

YOU are responsible for the safe operation and maintenance of your Honey Bee Header. YOU must ensure anyone who is going to operate or work on the Header is familiar with the operating and maintenance procedures and related SAFETY information contained in this manual. Remember YOU are the key to safety. Good safety practices not only protect you but also the people around you. Make these practices a working part of your safety program. Most accidents can be prevented. Do not risk injury or death by ignoring good safety practices. Operating instructions for this header should be reviewed by each operator at least once a year per OSHA regulations 1928.57. The meaning of each decal should be understood, and their locations should be known prior to operating the header.

Watch for this symbol, both in this manual and on the header. It will identify hazards that could cause injury or death.

General Safety

1. Maintain moving parts, hydraulics and motors clear of chaff and straw to prevent the possibility of fire.
2. Carry a multipurpose fire extinguisher in the power unit and know how to use it. Check the extinguisher regularly and keep it fully charged.
3. Provide a first aid kit in the cab for emergencies and know how to use it.
4. Do not wear loose clothing or jewelry around moving parts.
5. Wear appropriate protective gear. This list includes but is not limited to:
 • A hard hat
 • Protective shoes with slip-resistant soles
 • Protective glasses or goggles
 • Leather gloves
 • Hearing protection
 • Respirator or filter mask
6. Do not allow any one to ride on the swather while it or the windrower is in motion.
7. Make certain that the park brake is engaged, and the power unit is in neutral before starting the engine.
8. Clear the area of bystanders, especially small children before starting the power unit.
9. Do not allow anyone to operate the swather who has not been instructed in how to operate the machine.
10. All operators should familiarize themselves with the SAFETY section in the Power unit Operators Manual.
11. Some pictures or illustrations in this manual may not show protective shields in place. This is done in order to make important components visible. Make certain that all protective shields are secured in place before operating the machine.

Operating Safety – Good Practices

1. STOP the combine, engage the parking brake, place the combine in neutral, remove the key, and wait until all moving parts stop before leaving the cab.
2. Either lower both the table and the reel, or raise the header to its full height and set the platform lock before servicing the header. If working under the reel, set the reel cylinder locks. A loss of hydraulic pressure could cause the header and reel to lower unexpectedly.
3. NEVER operate machinery while fatigued, sick or otherwise impaired.
4. Do not operate the header in crowded or confined areas.
5. Remember, some models of the header are not centered on the combine feeder housing, it may be offset to the right, which may distort your judgment.

Maintenance Safety

1. Before undertaking any maintenance, engage the park brake, either lower the reel and header, or raise and lock the header using the platform lock and shut off the engine of the combine. Make sure there is no pressure being supplied to the hydraulic lines.
2. Hydraulic leaks can penetrate the skin causing serious injuries. Small leaks can be invisible and are the most dangerous. Use some kind of object, such as cardboard, to find the leak -- DO NOT USE YOUR HAND.
3. Ensure that all pressure is released from the hydraulic lines before starting a repair. Replace or repair damaged hoses immediately.
4. Care should be taken when maintaining the knife. Sickle sections are very sharp and can easily cause severe injury. Use heavy leather or canvas gloves when working with the knife. Always ensure everyone is well clear before moving the knife, manually or under power.
Transport Safety

1. Transport the header with the SMV (Slow Moving Vehicle) sign clearly displayed on the rear of the header and use your hazard lights if the law permits. Check local road laws before transporting.
2. When transporting the header on roads, always be aware of the width of the header.
3. For long - distance transporting completely install the full transport assembly. (see dismount section).
4. Do not transport the machine at night, at dawn, or at dusk.
5. Ensure hitch is firmly attached and secured with hitch pins before moving.
6. Attach the hitch safety chain before moving.
7. Do not exceed 40 kph (25 mph) during transport.

Before Transport Checklist

1. Do a complete walk-around and ensure everything is secure.
2. Check:
 - all reel mounting, reel drive and adapter assembly bolts to be sure no bolts/nuts are loose;
 - wheel bolts to make sure they are tight;
 - transport tire pressure - recommended pressure is 80 psi (552 kPa)
 - spindle and hitch lock pins - ensure they are in place and securely fastened.
3. Inspect all hoses. Ensure they are secured so they will not pinch or drag during transport.
4. Ensure hitch tongue and safety chain are fastened to the header and to the transporting vehicle.

During Transport Checks

1. Stop after the first 5 to 10 kilometers (2 to 6 miles) and check to make sure the wheel bolts are tight (The bolts should be torqued to 120 ft/lbs (163 Nm)) and ensure the wheel hubs are not hot. Make periodic checks every 50 to 60 km (31 -37 miles) if towing the header long distances.
2. Check the hitch bolt and safety chain periodically to make sure they are secure.

In-Field Checks

The First Time Setup and Operation section of your owner’s manual covers the adjustments which may be required on your Grain Belt header. Read this section carefully before using your Grain Belt header. Make the necessary adjustments before operating your header, and check these adjustments periodically as required.

Storage

Store the header on firm ground away from areas of human activity. The header may be stored in the quick dismount position or in the transport position.

If the storage location exposes the header to road salt during the winter months, thoroughly wash the header in spring time.

It is recommended to rotate the drapers so that the seam of the join is located underneath the table. This will improve drainage, thus reducing the possibility of ice buildup stretching, and damaging the draper material.
Safety Decal Locations

The following safety decals have been placed on your machine in the areas indicated. They are intended for your safety, and the safety of those working with you. Please take this manual, walk around your machine and familiarize yourself with the locations and content of these warning signs and labels. Review this information, and the operating instructions in this manual with your machine operators. Keep decals legible. If they are not, we suggest you obtain replacements from your Honey Bee dealer.

1. Keep them clean.
2. Know the location and meaning of all decals. Cross reference the numbers on the diagram below with the chart on the following pages to help identify the labels.

For continued safe operation of this machinery, it is recommended that you replace damaged safety decals immediately. You may purchase replacement decals from your dealer. The following illustration indicates the location of all labels on your header. Match the number indicated in this diagram to the numbered illustrations provided.
Safety-Related Labels

Vehicle Marking Reflectors:
(not shown on illustration)
1. Red (2x9) - 6 Locations.
2. Yellow (2x9) - 3 Locations.
3. Red-Orange (2x9) - 4 Locations.

4. **WARNING**
 - **ing pressurized fluids**
 - Do not remove or substitute. Failure to comply could result in death or serious injury.

5. **WARNING**
 - Moving parts under this cover.
 - Do not open cover while operating. Failure to comply could result in death or serious injury.

6. **WARNING**
 - **INCH AREA**
 - Pinch points at these locations.
 - Failure to comply could result in death or serious injury.

7. **DANGER**
 - Rotating part hazard.
 - Do not remove or substitute. Failure to comply could result in death or serious injury.

8. **DANGER**
 - Keep hands, feet, and clothing dry when working with parts.
 - Failure to comply could result in death or serious injury.

9. **WARNING**
 - Install cylinder locks before working on or under raised reels.

10. **WARNING**
 - Engage park brake on the power unit, shut engine down and wait for all moving parts to stop.

11. **DANGER**
 - **ROTATING DRIVE LINE**
 - Keep all shields and guards serviced and in place. Failure to comply may result in death or serious injury.

12. **DANGER**
 - Header will fall rapidly if hydraulic lift system should fail. Read header on ground or engage lift cylinder lockouts when working around raised header. Failure to comply may result in death or serious injury.

13. **CAUTION**
 - Replace or close shield before operating machine. Failure to comply could result in death or serious injury.

14. **CAUTION**
 - Keep all hydraulic components in good condition. Failure to comply could result in death or serious injury.

15. **DUAL HEIGHT ADJUSTMENT**
 - Position dual stopper to desired 1/2 location
 - Ensure adjustment hole is aligned with adjustment nut.
 - Safety Lock
 - Engage Cylinder Lock by inserting Clearance Height Stopper pin in Safety Lock.

16. **WARNING**
 - Before transporting:
 - Secure Hitch Pins and Lock Pin on Draw Bar
 - Secure Safety Chain to Tow Vehicle
Mounting Instructions

These instructions are designed to help you safely and easily mount your Grain Belt Header onto the combine. If you follow these instructions in the order given, you will avoid difficulties. Use the Mounting Checklist at the end of this section to ensure that the header is mounted properly and is ready for the field.

A complete setup includes the following sections of this manual:
- Mounting – (this section)
- Coupling
- Leveling
- Transport, or Integral Axle removal
- Mounting Checklist
- Pre Start Checklist

Terminology

<table>
<thead>
<tr>
<th>Combine & Header Reference Directions</th>
<th>Illustration A - Page 25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left</td>
<td>Right</td>
</tr>
<tr>
<td>Rear</td>
<td>Rear</td>
</tr>
<tr>
<td>Right & Left</td>
<td>Right & Left</td>
</tr>
<tr>
<td>Front</td>
<td>Front</td>
</tr>
<tr>
<td>Feeder house end of the combine</td>
<td>Cutter bar side.</td>
</tr>
<tr>
<td>Straw spreader/chopper end of the combine.</td>
<td>Feeder house mount side.</td>
</tr>
<tr>
<td>As seen when sitting in the driver's seat facing the header</td>
<td>As seen when sitting in the driver's seat facing the header when it is mounted on the combine or standing at the back of the header facing towards the cutter bar.</td>
</tr>
</tbody>
</table>

Combine & Header Reference Directions

Illustration A - Page 25
Combine Preparation

1. Remove factory pickup or auger header from the combine as outlined in the Owners/Operators manual supplied by the combine manufacturer.
2. Check feeder housing front and top for straw and chaff build-up. Clean all contact areas thoroughly.
3. Check all locking mechanisms and/or lock pins on feeder housing of combine to ensure they are working properly and will not interfere with the initial mounting of the Grain Belt Header on your combine.
4. Check for leaks and/or loose fittings on hydraulic lines (hoses) which attach to the header. Repair if necessary.
5. Check the feeder housing output speed to see that it matches the recommended speed of the header. See the Specifications section of this manual.

Grain Belt Header Preparation

1. Check the feeder housing adapter area on the Grain Belt Header for any obstructions.
2. Be sure the hydraulic pump and attached hoses are clear of the feeder housing adapter opening. Slide the telescoping drive shaft back as far as possible, if necessary, slide the pump back on the mount bracket so it does not interfere with the feeder housing as you drive the combine forward.
3. Check hydraulic hoses to be sure the couplers match those on the combine.
4. Park the Grain Belt Header on flat, hard, and level ground if the optional transport system was purchased. Level the header by adjusting the hitch jack.
5. Install the crop dividers, and crop divider pipes (or stub nose) to the ends of the table. The crop divider and pipes are not installed at the factory for shipping purposes. Once installed, operators should be aware of the assembled width of the combine, and should check local regulations before transporting on public roadways.
6. The crop divider overlaps the outside of the crop deflector to provide a smooth transition for the crop.
7. Insert the crop divider pipe (or stub nose) into the nose of the crop divider. Place a 3/8 x 2” carriage-head bolt through the threaded insert until tight against pipe base. With the bolt in place secure with a lock nut.
8. The divider is designed to be adjusted in order to run without trampling the crop. This will provide good crop separation, and will help prevent crop plugging in the corners. The crop divider pipe is intended to be used when cutting off the ground, and the stub nose is to be used when cutting on the ground.

Positioning Header on Feeder Housing:

1. Position combine directly behind the header with the feeder housing aligned as closely as possible, on center, with the feeder housing adapter on the header sub frame.
2. With the feeder housing on the combine lowered, slowly drive the combine forward until the feeder housing front is aligned both vertically and horizontally with the adapter frame on the header. If the feeder housing does not align horizontally, adjust the optional hitch jack on the header either up or down to improve alignment. Adjust feeder housing height.
3. When the feeder housing is properly aligned with the adapter on the header, drive forward slowly until the feeder housing of the combine is inserted into the adapter frame. Slowly raise the feeder housing on the combine (using the combine control) until the top of the feeder housing makes firm contact with the inside top of the feeder housing adapter mount. If the bottom of the feeder housing makes contact with the auger adapter too soon, it may be necessary to extend the top link on the sub frame (See Leveling or Troubleshooting sections of this manual.)

4. Check clearance and alignment of the feeder housing to the feeder housing adapter on both sides of the feeder housing as well as on the top and bottom. Be sure that nothing is interfering with the alignment of the feeder housing to the adapter frame.

WARNING Engage the parking brake on the combine, shut the engine down and wait for all moving parts to stop before leaving the cab.

5. Check the position of the feed auger in the adapter to be sure it is not contacting the shrouds on the front of the feeder housing. If required, adjust the feed auger to a more forward position in the adapter (See the Feeder Housing adjustment section of this manual.)

6. If feeder housing and the feeder adapter are properly aligned, restart the engine and raise the feeder housing (and header) to its fully raised position.

ATTENTION If feeder housing and the feeder housing adapter frame ARE NOT properly aligned, repeat steps 2, 3, 4, and 5.

WARNING Engage the parking brake on the combine, shut the engine down and wait for all moving parts to stop before leaving the cab.

7. Lock the feeder housing in the fully raised position as described in your Combine Operators Manual.

8. With the header in the fully raised position insert all lock pins and/or header adapter locking bolts as described in your combine owner’s manual.

ATTENTION Be sure these pins are properly located and securely in place before proceeding.

Coupling

Sub frame Adjustment

The sub frame requires some adjustment to allow full floatation of the header in the field

1. After header is mounted to the combine, lengthen the right sub frame leveling bolt to allow approximately 3" between the lift link and the sub frame lug.

2. Repeat this adjustment on the left side. This adjustment allows the cutter bar to drop down, giving more clearance between the ground and the feeder deck. Further adjustments can be made as necessary.

For further instruction on leveling the header, see the Leveling section on page 29.

Restrainer Chains

Locate the transport restrainer chains on each side of the header adapter frame near the bottom. These chains restrict the amount of header floatation and also suspend the adapter frame when the header is on the transport axle or in the quick dismount position.

Unhook the chains and re-attach them in the longest position. This will provide unrestricted header floatation in the field.

Subframe Right Side - Illustration A - Page 29

Restrainer Chain - Illustration B - Page 29
Coupling the Drive Shaft

Remove the pin and lift the telescoping drive line from the storage bracket. Replace the pin and close the clip. Couple the drive line to the feeder housing shaft. Align the drive line so that a minimal amount of angle is required when the drive line is coupled.

Connecting Hydraulic Hoses:

Couple the hydraulic lines. Be sure the couplers match those on the combine and are fully engaged. Connect the Reel Lift, Reel fore/aft controls (optional). Secure the Reel drive circuit. (Not required if combine is not equipped with hydraulic reel drive circuit.

Electrical Connections

If the header hydraulic system is used to drive the reel, the flow control will be equipped with a remote speed adjustment. Connect power wires to a power source on the combine and install a switch in a convenient location. Connect warning lights and flashers. Connect reel speed sensor wires.

Leveling

The header is attached to the adapter frame by the upper suspension link, (located on the top middle of the header adapter), and two leaf spring assemblies. An optional hydraulic upper link is available, which mounts centrally on top of the header. These top links adjust the forward angle of the table. This directly affects the angle of the cutter bar to the ground. The adjustment bolts on the spring saddles affect leveling and the overall height. Turning the adjustment bolts will alter the clearance between the ground, and the back of the center deck.

Forward Angle – Manual Adjustment

1. Loosen lock tab on top link. Turn top link clockwise to tilt header back, turn counter-clockwise to tilt header forward.
2. Re-tighten lock tab once desired header angle has been reached.

NOTE! The top link connection may look slightly different for each machine.

ATTENTION Do not over-extend top link. OVER-EXTENSION OF LINK MAY CAUSE TABLE TO DROP SUDDENLY.
Leveling and Table Height Adjustment

1. Shortening the adjusting bolts will raise the table, lengthening the adjusting bolts will lower the table. To level the table, screw the adjusting bolts in or out depending on which side needs to be raised or lowered. To turn the adjusting bolts, lower the table to the ground, this will take the weight off the bolts and will allow them to be turned. They can be turned by hand, but if not use a wrench. Lift table and check level.

2. To lower the cutter bar relative to the sub-frame, extend both adjusting bolts. This will provide more clearance between the sub-frame and the ground. This adjustment will also provide more clearance between the center deck and the ground allowing the cutter bar to contact the ground first.

ATTENTION
Do not expose more than 5" (125mm) of thread (including spacer) on the table adjusting bolts. If bolts are extended too far, threads will disengage from the lift link and the table will drop suddenly.

Care must be taken when lengthening the adjusting bolts. This action will decrease the size of the opening leading to the auger adapter.

NOTE!
The recommended minimum distance between the top of the spring saddle and the inside of the table strut should be no less than 3" (75mm).

The auger adapter is stationary in the sub-frame, and as the table lowers with the adjusting bolts, the hydraulic lines under the upper tube will move closer to the fingers in the auger. To ensure that the fingers do not contact the hydraulic lines: disconnect the drive line, lift the finger auger and rotate the drum. Check the clearance.

Floatation

To vary the stiffness of the suspension, loosen or tighten the clamping plates on the spring saddles. Whenever the header is lifted using the combine, the clamp plates will be loose. This condition is normal, and acceptable. Tighten the clamp plates only if stiffer floatation is desired.

When operating in the field position, the restrainer chains should be at full extension (loosened) to provide maximum end-to-end floatation for the header.

The following diagrams of the Grain Belt Header are presented to show you the maximum range of adjustments to the leveling bolts and the top link. In each of the views, the sub-frame has been kept at a constant height above the ground. These examples show the possible extremes of these adjustments.

Example A:
The leveling bolts have been shortened, causing the cutter bar to be lifted, and the top link has been shortened, causing the table to be tipped back.
Example B:
The leveling bolts have been shortened, and the top link is fully extended. Notice how the top link tilts the table forward.

With both of these examples (A & B), if the feeder house is lowered allowing the cutter bar to get closer to the ground, the sub-frame and center deck will contact the ground first.

In most cases the distance between the spring saddle and the table strut should be between 3”(75mm) and 5”(125mm). This should provide adequate flotation and adequate clearance between the auger fingers and the header opening. This distance will change as the header angle is changed, so it may be necessary to re-adjust leveling bolts.

Example C:
The leveling bolts are extended with the top link shortened. The extension of the leveling bolts allows the table to drop in relation to the sub-frame. In this configuration, clearance between the strut and the spring saddle is at a minimum which may not provide adequate end-to-end float.

At this extreme of the adjustment range, you may encounter interference between the finger drum and the upper tube.

Example D:
The leveling bolts are extended with the top link also extended. The top link tilts the table forward bringing the cutter bar closer to the ground. The clearance between the strut and the spring saddle is also increased in this example, providing better flotation.

Before operation of equipment all clearances must be checked.

These examples are extremes, and it is not suggested or recommended to adjust your header to the extreme. Experiment within the range of these “maximum” settings to determine which configuration will be best for your situation and crop cutting conditions.

For example:
In rocky conditions with a short crop, you may want to keep the guard tips oriented flatter in relation to the ground. Try shortening the top link.

In bushy crops such as mustard you may want to tip the header forward with the top link to maximize the opening.

Care should be taken not to over extend the top link. The maximum length from bolt center to pin center is 19”. Extending further may cause the header to drop suddenly.
Removal of Transport Equipment

Standard Transport Option – Convert to Field Operation

NOTE!

The transport axle, hitch and gauge wheels are optional. If these were not purchased, disregard references to them in this manual.

WARNING

Transport axle and transport hitch parts are heavy. Care should be taken when handling them to avoid injury.

With header in raised and locked position:

1. Remove lock pin and wheel assembly from front of transport axle.
2. Insert lock pin back into spindle assembly and close the clip.
3. Store wheel assembly in desired location or install wheel assembly into gauge wheel brackets, if equipped.
4. Remove the back wheel assembly from the transport axle.
5. Remove the transport lock pin which fastens the rear of the transport axle to the header sub frame.
6. Slide the transport axle tube toward the front of the header until it falls to the ground.
7. Insert axle lock pin back into the transport axle tube bracket.

Removing and Storing the Hitch

If desired, the hitch tube may be removed, if the weight of the header needs to be reduced, or if the hitch interferes with the ground when cutting at a low angle.

1. Lift header off the ground with the combine. Lock the main cylinder.
2. Loosen the jack lock pin and remove jack from hitch tube.
3. Remove pin from the hitch bracket.
4. Lower hitch end to the ground.
5. Remove pin from the end of hitch tube where it is connected at the strut. Stay clear of hitch tube as it falls.

WARNING

Hitch parts are very heavy. Care must be taken when handling these parts to prevent injury.
Integral Axle

Integral Axle - Convert to Field Operation

The integral axle, hitch and gauge wheels are optional. If these were not purchased, disregard references to them in this manual.

WARNING

Transport axle and transport hitch parts are heavy. Care should be taken when handling them to avoid injury.

NOTE!

1. Lift header off the ground with combine.

2. Remove lock axle pin, and spindle of rear tire, install wheel, and spindle into right hand gauge wheel strut.

3. Support axle riser, pull lock pin.

4. Remove axle riser from bracket.

5. Turn riser over, and install upside down in storage bracket.

NOTE! If this axle riser is not put into field storage position, it may fall out while cutting.

6. Remove lock pin from axle and spindle of front tire.

7. Push on the end of the transport axle with your foot to loosen the axle.

8. Take tire around header to left side and install wheel into left hand gauge wheel strut.

9. With both tires removed, pull the transport locking pin.

10. Grasp the one-inch tubing across the end of the axle.

11. Retract the lock pin, and pull the axle upward, then set it into the storage pocket.

NOTE! The end of the transport axle should rest in the storage pocket when in field position.
Caster Gauge Wheels

Gauge wheels enhance the table’s ability to follow the profile of uneven ground. In the cutting position, especially in short or “down” crops, this can prove to be essential. These wheels are designed to caster, making it unnecessary to raise the header when cornering.

Damage to the caster wheels could result if header table and gauge wheels are not lifted clear of the ground when backing up.

ATTENTION Damage to castor wheels can also result from making tight turns. The sharp turning capabilities of some combines can cause one of the wheels to be dragged backwards. This could cause damage to the wheel.

NOTE! The header should be parked on level ground and leveled before attempting to adjust gauge wheel height.

Gauge wheels must be adjusted relative to the height at which the header will be operated in the field. Normal adjustment would allow the weight of the header to compress the spring shaft of the gauge wheel assembly allowing 5” (12 cm) of shock shaft to be exposed.

IMPORTANT Excessive compression of the Shock Assembly will cause stress and premature wear in the top link.

NOTE! Adjustments to table tilt, spring flotation, and pitch will affect the amount of compression in the Shock Assembly. Check shock shaft exposure, and adjust accordingly, after any of these adjustments.

ATTENTION Remember, the Gauge Wheels are NOT designed to support the weight of the table! Their purpose is to help guide the table over variations in ground level.

The seven mounting holes on the header frame provide additional adjustment when cutting crops high, leaving lots of stubble, or cutting low with the table tilted forward.

Gauge Wheel Height Adjustment

1. Park windrower on a level surface, and engage the park brake. Raise the swather table up to its locking position, and lock it in place.

2. Remove the lynch pin from the end of the Lock Pin.

3. While grasping the Height Engagement Handle, push it slightly down towards the shock assembly to release pressure on the Lock Pin, remove the Lock Pin from the frame mounting hole, and let the handle slowly come up under control.

WARNING Have FULL control of both handles when performing adjustments.

4. While still grasping the Height Engagement handle, use your other hand to grab the Lift Handle and lift the Gauge Wheel Assembly so that the Pivot Bolt comes out of the current slot location on the frame. Lift or lower the Gauge Wheel Assembly to the desired height and place the Pivot bolt in the corresponding slot location.

The Gauge Wheel Assembly is Heavy!

5. Push the Height Engagement Handle down towards the shock assembly until the frame mounting hole lines up. Ensure that the Pivot Bolt stays fully seated in the slot while pushing down. Insert the Lock Pin into the mounting hole to lock the Height engagement Handle in place. Secure Lock Pin with the lynch pin.

6. Repeat steps 2 through 5 on the other Gauge Wheel Assembly, using the same height setting.

7. Lower the swather table until it is at field operation height. Check exposed Shock Shaft length to see if it matches the recommended 5”. Re-adjust Gauge Wheel height as needed.
Mounting Checklist

- Header adapter frame aligned and fitted to the feeder house of the combine.
- Feed auger adjusted. (Auger fingers do not contact the feeder housing.)
- Feeder housing lock pins/bolts in place and properly locked/tightened.
- Transport axle tube and hitch tube removed from the header.
- Gauge wheels installed as directed. (If equipped.)
- Hydraulic lines (quick couplers) fully connected.
- Gearbox aligned and connected to the bottom feeder house output shaft.
- Finger auger drive shaft aligned and connected.
- Electrical connections in place and tested.
- Restrainer chains latched in the longest position.
- Transport parts stored for future use.
- Header is level.
- Feeder House Drive straight as possible and correct length.

WARNING
Before proceeding, be sure you have been through the Mounting Checklist. This will ensure that the header is securely mounted.

IMPORTANT
If the combine will not raise the header, see the Troubleshooting section of this manual.

WARNING
Be sure no one is standing near the machine while you are raising or lowering the header.

Pre-Start Checklist

- Start the Combine and lower the header to level ground, if necessary.
- Inspect the header for damaged or loose parts. Repair or replace any such parts immediately.
- Check oil level in hydraulic reservoir of the header. Add to specified level with the recommended oil, if required.
- Ensure that all protective shields are in place and secured.
- Inflate tires to 50 psi (345 kPa) for both transport, and for field operation.
- Inspect all hydraulic hoses and fittings. Ensure connections are secure and hoses are in good condition.
- LUBRICATE THE HEADER as outlined in the Service section of this manual.
- Make certain Draper Support Strap has been removed.

Cold Weather Start-up – Temperatures below 10C/50F

ATTENTION
It is a good practice, and in cold weather it is absolutely necessary, to allow the oil to warm up prior to any cutting. Turn the draper flow control to zero to prevent pressure spikes

With the combine at low idle, engage header drive. Do not increase to high idle until oil has reached operating temperature. Once the oil is warm, increase the draper flow control to desired speed. If oil flow passes over the relief, it may be necessary to adjust the relief pressure. Refer to the Hydraulic Section of this manual.
Normal Start

1. Start the combine. Using the reel height control, raise the reel to full height (cylinders fully extended). Hold switch on momentarily at the full height position, then drop the reel to its lowest position (cylinders fully retracted). Complete this cycle at least twice to ensure it is working properly.

2. ENGAGE THE PARKING BRAKE. Engage platform drive switch (see Combine Owner's Manual for instruction) with engine at idle RPM. The platform draper, knife and reel should begin to turn...

WARNING
If any oil leaks appear, shut the combine down immediately and make the necessary repairs before restarting.

3. Increase idle speed. When combine is at high idle check and set:
 - Reel speed.
 - Draper tracking.
 - Draper speed.
 - If adjustments are required see the appropriate section of this manual.

4. With header lowered to approximately 2 inches (5 cm) from the ground, STOP COMBINE, SHUT ENGINE DOWN and check:
 - Header leveling (end to end).
 - Header cutting angle.
 - Strut and spring saddle separation.
 - 3” to 5” recommended.
 - Gauge wheel height.
 - Reel mount bolts.
 - Knife head section bolts and bearing block bolt.
 - Knife head bearing bolt.
 - Knife drive support/crank bolts.
 - Connector bar bolts on knife back.
 - Knife drive mounting bolts.

5. With the header raised, engage header drive with combine at idle. The header, knife, and drapers should operate.

6. Activate the reel with combine controls. Steadily increase engine speed until full operating RPM has been reached.

ATTENTION
Practice operating and maneuvering the header and combine in an open area away from people and buildings.

Cutting System

All cutter bar components must be maintained in good condition to obtain acceptable field performance. Inspect the cutter bar daily for damaged and broken parts before starting work. Repair or replace parts as required.

CAUTION
When working with or around the knife, the following procedures should be taken to prevent serious injury or death to yourself or others around you.

- Raise the header table, raise the reel, stop the engine, set the parking brake and remove the ignition key before dismounting the combine.
- Install feeder house lift cylinder locks and reel lift cylinder locks.
- Clear the area of bystanders, especially small children.
- Wear heavy canvas or leather gloves when working with the cutting system.

WARNING
Knife sections are sharp
1. Wear heavy canvas or leather gloves when working with knife.
2. Be sure no one is near the cutter bar when removing or rotating knife.
Cutting System Maintenance

Guards

“EasyCut” guards are manufactured from heat treated spring steel. They have beveled cutting edges at the top and bottom making the guards cut better and last longer.

When replacing guards always mount the new guard with the SCH stamp to the top. Be sure the spacer bar is on top of the cutter bar. The crimp lock nut on the guard bolt should always be on the top.

Alignment of the guards is critical. Before tightening the guard bolts, push the spacer bar as far back on the cutter bar as far as possible and pull the guard ahead as far as possible. Sight down the cutter bar to be sure the guards are aligned. Tighten guard bolts.

Sickle Sections

Install the sickle sections of the knife by alternating the cutting surfaces. Place one section with the cutting surface on top and the next with the cutting surface on the bottom. They must be sharp, and in good condition to obtain optimum cutting performance.

Knife Removal

1. Remove the two socket-head cap screws on the knife head block.
2. Slide the knife out of the cutter bar.
3. Reverse the procedure when installing the knife. Apply a small amount of thread lock solution to cap screws before installation. Torque bolts to the recommended specifications of 59 ft-lb (80 Nm).

Replace a Section – Method 1:

1. Remove the guard to expose the section.
2. Unbolt the section and install a new one.
3. Tighten the section bolts and nuts.
4. Install the guard. Ensure the spacer bar is pushed to the rear, and the guard is as far forward as possible. A small pry-bar may be helpful for this task.

Replace a Section – Method 2:

1. Move the knife by hand until one section bolt is exposed.
2. Remove the bolt.
3. Turn the knife until the other bolt is exposed.
4. Remove it, and install a new section.
5. Replace and tighten the bolt.
6. Turn knife back to install and tighten the other bolt.

Remember when installing sections to alternate the serrations, one facing up and the next facing down.
Knife Drive/ Knife Head

Proper maintenance of the knife drive assembly is critical to the performance of your Grain Belt Header. See the Lubrication section of this manual for scheduled maintenance procedures.

Check the tightness of the knife drive hold down bolts daily. Tighten to the specified torque.

Check the knife head bearing daily. Ensure the bolt is secure. If the bolt is tight, check the condition of the bearing and nylon sleeve. Replace any defective parts immediately to prevent damage to the drive.

Check the knife head locking bolt and the socket head cap screws daily.

*The knife head cross bolt (as shown in Illustration 34: Knife Drive Torque Values) should be torqued to 53ft-lb (72Nm) if you are using a Crary cutting system, and 73ft-lb (99Nm) if you are using the SCH cutting system.

Rotate the knife drive by hand after tightening the knife head bolt to be sure the bearing, and the knife are moving freely.

Check the knife head bolts, which attach the knife head to the knife back, daily. The bolts should be tightened to 120 in lbs., (13.5 Nm), (9.96 ft lbs.).

SCH Connector Bar

On some models of Honey Bee headers a connector bar is used to connect two sections of knife. The knife back is the part of the knife to which the sickle sections are bolted. On units that use the SCH cutting system, the connector bar is installed on the underside of the knife back. The SCH connector bar has twelve threaded bolt holes in the bar. The knife back is punched with holes to accommodate the sickle sections and the holes are slightly tapered from the bottom.

Knife sections must be installed on the top side of the knife back (the side with the SCH Logo). The bolts should be tightened to between 120 - 150 in-lbs, (13.5 - 17 Nm).

Crary Connector Bar

The knife sections must be installed on top of the knife back, then secured in place with the connector bar on top of the sections. Torque the nuts and bolts to between 120 – 150 in-lbs (13.5 – 17 Nm).

Check the tightness of these bolts daily; and replace broken and worn sections as required.
Overlap Kit
The overlap kit is used on headers equipped with a double knife drive. The knife sickle sections that overlap use countersunk fasteners to provide a smooth surface over which the other end of the knife slides.

The guards used in this overlap area are open on the top side, and are specially designed to accommodate the extra thickness in this area of the knife. The overlap strap, bolted to the left-hand knife, will offset the countersunk sections to allow the knives to overlap.

If the knife is noisy or overheats, check this area to ensure the overlap guards have been properly installed. The hold down rollers have been added to maintain close cutting tolerances, and to prevent the overlap strap from wandering.

The overlap sections connected to the overlap strap, and the right hand knife back should be tight when the countersunk bolts are tight.

If these sections are loose, it is possible that the countersunk bolts are not seating properly. The backup bar may need to have a slight countersink drilled around the holes to permit the bolts to seat fully.

Make sure that fresh threadlock is applied to all nut and bolts that are installed. It is applied at the factory when assembled.

Repair Broken Knife Back
If the knife breaks during use, repairs can usually be made with a connector bar. Most often the knife back will break across a sickle section bolt hole. To use the connector bar properly, the damaged section needs to be cut out and/or a section of knife removed.

IMPORTANT
If the knife breaks close to the knife head, remove that section of knife, reconnect the knife head, and then add the new section to the far end of the knife where there is less mechanical stress. The join in the two knives must be located midway under a sickle section, not in the gap between two sickle sections.

When you encounter this type of break, inspect the knife for dull/damaged guards, and sections, and gummy build-ups which might cause binding. One or more of these problems may have been the cause of the failure.
Maintenance & Lubrication

Lubrication

IMPORTANT Use good quality, general purpose grease

<table>
<thead>
<tr>
<th>Item</th>
<th>Lubricant</th>
<th>Quantity</th>
<th>Frequency</th>
<th>Location/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knife Drive</td>
<td>Grease</td>
<td>2 shot</td>
<td>50 hours</td>
<td>Bottom of crank shaft</td>
</tr>
<tr>
<td>Knife Drive bearing</td>
<td>Grease</td>
<td>2 shot</td>
<td>10 hours</td>
<td>Side of knife drive knuckle</td>
</tr>
<tr>
<td>Reel bearings</td>
<td>Grease</td>
<td>1 shot</td>
<td>10 hours</td>
<td>Ends of reel(s)</td>
</tr>
<tr>
<td>Gauge Wheels</td>
<td>Grease</td>
<td>1 shot</td>
<td>10 hours</td>
<td>Caster sleeve</td>
</tr>
<tr>
<td>Guard</td>
<td>Grease</td>
<td>1 shot</td>
<td>50 hours</td>
<td>(1 location per cone)</td>
</tr>
<tr>
<td>Driveshfts</td>
<td>Grease</td>
<td>1 shot</td>
<td>50 hours</td>
<td>Telescoping members</td>
</tr>
<tr>
<td>Knife</td>
<td>Water/Diesel</td>
<td>Soak</td>
<td>As needed</td>
<td>If knife is gumming</td>
</tr>
<tr>
<td>Drive Chain</td>
<td>Chain lube</td>
<td>Soak</td>
<td>As required</td>
<td></td>
</tr>
<tr>
<td>Hub and spindle</td>
<td>Grease</td>
<td>Re-pack</td>
<td>Annually</td>
<td>Replace seals as needed</td>
</tr>
<tr>
<td>Gear Box-Speed Inerease</td>
<td>75W90 Full Synthetic</td>
<td>Re-pack</td>
<td>Annually</td>
<td>Check daily that no leaks occur</td>
</tr>
<tr>
<td>Hydraulic tank</td>
<td>Co-Op Trans-Hydraulic/Esso Hydraulic 56</td>
<td>Replace fluid</td>
<td>Every 3 years or 1000 hours</td>
<td>Optimum Operating range -30C to +80C (-22F to +176F)</td>
</tr>
</tbody>
</table>

Filters

The suction line strainer (100 MESH) does not require replacement. If the oil becomes contaminated, the strainer should be removed, washed and dried before re-installation.

Change the return line hydraulic filter after the first 50 hours of operation and seasonally thereafter. Compatible replacement filter is the Donaldson Duramax P164375.
Maintenance

<table>
<thead>
<tr>
<th>Item</th>
<th>Look For</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive Lines:</td>
<td>- wear in each yoke and cross kit</td>
</tr>
<tr>
<td></td>
<td>- lubrication in slide tubes and shield bearing.</td>
</tr>
<tr>
<td></td>
<td>- worn friction disks, pressure plates, and</td>
</tr>
<tr>
<td></td>
<td>- pressure setting of slip clutch</td>
</tr>
<tr>
<td>Reel:</td>
<td>- missing, damaged, or broken fingers,</td>
</tr>
<tr>
<td></td>
<td>- worn bearing joints.</td>
</tr>
<tr>
<td></td>
<td>- bent, broken, loose, or missing parts</td>
</tr>
<tr>
<td></td>
<td>- wear in reel drive couplers and reel joints</td>
</tr>
<tr>
<td></td>
<td>(split reel)</td>
</tr>
<tr>
<td></td>
<td>- lubrication</td>
</tr>
<tr>
<td>Crop Dividers & Crop Deflectors:</td>
<td>- damage, abrasive wear on the shoe of the crop divider,</td>
</tr>
<tr>
<td></td>
<td>- stress cracks</td>
</tr>
<tr>
<td>Chain case:</td>
<td>- sprocket wear,</td>
</tr>
<tr>
<td></td>
<td>- chain stretch or damage.</td>
</tr>
<tr>
<td>Hydraulic System:</td>
<td>- leaks at pump, hoses, steel lines, and</td>
</tr>
<tr>
<td></td>
<td>cylinders.</td>
</tr>
<tr>
<td></td>
<td>- damaged pressure gauges.</td>
</tr>
<tr>
<td></td>
<td>- squealing relief valve.</td>
</tr>
<tr>
<td>Transport and hitch system:</td>
<td>- all components are secured</td>
</tr>
<tr>
<td></td>
<td>- cuts and abrasions on tires</td>
</tr>
<tr>
<td>Cutting system:</td>
<td>- worn, loose skid plates or poly skid under the cutter bar</td>
</tr>
<tr>
<td></td>
<td>- worn, loose knife head and knife drive bearings.</td>
</tr>
</tbody>
</table>

IMPORTANT Service, repair, or replace all components as required.

Periodic Checks

Check all cutting parts carefully for damage and wear. Worn knives and guards can cause higher cutting pressures and increase incidences of knife stalling. Sickle sections are considered worn if the cutting edges are chipped, broken or dull. The cutting edge of the guard gets rounded and wider as the guards wear. When the gap is nearing the thickness of two sections, it is time to replace the guards.

- Check knife back and spacer bars.
- Check connector bar joints, which should always be under a sickle section.
- Oil knife and guards for storage.

Auger Drum Maintenance:

High wear parts, such as the finger guides, should be checked carefully. Remove the inspection covers on the drum and examine the inside. Check the finger bearings. None should be binding. Examine the rivet or roll pin in the finger bearing. It must be tight. If the roll pin is working its way out, install a wire in the center of the roll pin. Inspect the drive lines, and lubricate as shown in the Center-feed Auger section of this manual.

Drapers – Periodic Maintenance:

These eleven steps can significantly reduce repair costs to the drapers:

1. Remove draper connector bar.
2. Remove draper. Clean draper of debris, both sides.
3. Clean debris from rollers.
4. Clean debris from deck channels and runners.
5. Check and bend down corners of deck runners so draper does not get caught.
6. Clean adjusters; lubricate guide tubes and adjuster tubes. Adjusters should move freely inside the guide tube.
7. Check idler roller bearings, they should spin freely.
8. Check drive roller bearings.
9. Check bearing stubs.
10. If storing header outside with draper installed on decks, position the connector bar on the underside to allow water to drain from decks. Water build up and freezing action may stretch the draper material.
11. Perform these steps on the center deck also.
Replacing Center Bolt in Suspension Springs.

1. Remove any tension from the suspension springs. If you are required to jack up the sub frame, be sure to use blocks to support the weight.
2. Loosen the leveling bolt on the lift link and spring saddle that has the broken bolt.
3. Line up the holes in the spring and spring saddle.
4. Drive out the broken bolt with a punch.
5. Install a new bolt from the bottom and secure with a nut.

Center Bolt Replacement - Illustration A - Page 56

Hydraulics

This section outlines the Hydraulic system, which drives the Grain Belt Header. The components, as well as the schematics of the various systems, are shown in the "Hydraulic Schematics" section of this manual.

All of the Grain Belt Headers have a self-contained hydraulic system. The feeder house drive shaft is connected to a gearbox by a drive line. The output shaft of the gearbox drives the hydraulic pumps (CanAm units have one pump). Oil flows to the knife drive from the large displacement pump, and, then to the draper control circuit from the smaller displacement pump (CanAm units – draper circuit feeds from knife circuit). The draper control circuit is split between the lateral drapers and the center draper. The oil then returns to the reservoir tank. Adapters with a header-driven reel have the drapers and the reel plumbed in parallel with separate flow-controls. There are two relief valves in the system, one in the knife drive circuit and the second in the flow control of the draper circuit (a third for header-driven reels in the reel circuit).

Operating Pressure

The Knife Circuit pressure gauge, connected to the relief valve, is mounted to the side of the hydraulic reservoir. It indicates the hydraulic pressure available to the Knife circuit. The Draper circuit pressure gauge, connected to the Draper Flow Control, is also mounted to the side of the hydraulic reservoir. It indicates the hydraulic pressure available to the Draper circuit.

Normal Pressures

Operate the header with the combine at high idle, and the ambient oil temperature about 70°F (20°C). The Knife circuit pressure gauge should now be in the 200psi (14 bar) to 1000 psi (69 bar) range, and the Draper circuit pressure gauge should be between 1000 psi (69 bar) and 2300 psi (159 bar).

New units tend to operate on the higher side of this range, and double drive knife systems will require approximately 300 psi to 500 psi (21 - 35bar) more pressure for normal operation. Oil pressure will increase during normal cutting operations and will vary depending on crop conditions, the condition of the cutting system, draper speed and ground speed.

NOTE!

Center Bolt Replacement - Illustration A - Page 56
Cold Weather Operation – Temperatures below +10C/+50F

ATTENTION

It is always a good practice to allow the oil to warm up prior to cutting, and in cold weather it is absolutely necessary.

While warming the oil, turn the draper flow-control to zero to prevent pressure spikes.

1. Engage header drive with combine at low idle to warm the oil.
2. Do not operate the header drive at a high idle until oil has reached operating temperature.
3. Once the oil is warm, adjust the draper flow-control to the desired speed. If the flow-control passes too much oil over the relief, it may be necessary to adjust the flow-control relief pressure higher. Consult your dealer or a factory representative.

ATTENTION

It is NOT RECOMMENDED to adjust the relief pressure higher than the factory setting without first consulting your dealer or a factory representative. The relief valve is factory set at 3000 psi (207 bar).

High Pressure - Diagnostic Checks

If the pressure required to drive the knife is high, check the cutting system for

1. Material gumming or binding on the knife. Clean as required.
2. Broken and dull sickle sections. Replace as required.
3. Bent, broken and dull guards. Replace as required.

If the cutting system seems to be OK, check the following areas:

1. Knife head bearing. Unbolt knife head block and pull knife back at least 12” (300mm). Refer to the Cutting section for procedures if required.
2. Turn knife head block and bearing by hand, if bearing is rough or noisy, replace bearing.
3. Leave the knife pulled out. Insert a bar into the knife drive fly wheel and turn flywheel. Feel for roughness or binding in bearings or gears. Remove bar.
4. Start the combine and engage drive. Check knife drive pressure. Normally, it takes 100 psi to 150 psi to operate the drive motor in this manner. If pressure is now significantly lower, the problem will be found in the knife. If pressure is still high, the problem is in the knife drive motor, draper motor circuit or the hydraulic circuit.

Other Problem Sources

If the output rpm of the drive shaft from the combine is too high, or the pump capacity is not matched to the combine, the pressure may be high. High pressures may indicate a problem in the draper circuit. See “Draper Operating Pressure” in this section.

Diagnostic Checks

1. If the pressure at the main pressure gauge and draper gauge is low, or is fluctuating, shut combine down, and check the oil level in the hydraulic tank. Oil should be visible at the top of the sight glass.
2. If oil pressure drops when making a right hand turn or on a side hill, shut combine down, and check oil level.
3. If the knife stalls while cutting, check for:
 - low oil level,
 - leaking relief valve,
 - worn pump.

If there is a sudden loss of hydraulic pressure, check for major leaks in the system. If no leaks are found, inspect the splined output shaft of the pump. If the shaft is sheared or stripped, install a coupler kit.

If none of the above items are the cause of low oil pressure, it will be necessary to install a flow meter to determine the cause. Contact your dealer for assistance.
Chain Case Assembly Pumps by Combine

<table>
<thead>
<tr>
<th>Adapter</th>
<th>Knife Drive Pump</th>
<th>Pump Part #</th>
<th>Mid Sec Measurement</th>
<th>Draper Drive Pump</th>
<th>Pump Part #</th>
<th>Mid Sec Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH (CR/CX & TR/TX) AFX</td>
<td>163D70010 31.8 cc 1.94 ci</td>
<td>27395</td>
<td>1-1/4"</td>
<td>83013657 17cc 1.04 ci</td>
<td>28030</td>
<td>11/16"</td>
</tr>
<tr>
<td>JD & CIH</td>
<td>83007988 36.1 cc 2.20 ci</td>
<td>27951</td>
<td>1-7/16"</td>
<td>83017852 19 cc 1.16 ci</td>
<td>28221</td>
<td>3/4"</td>
</tr>
<tr>
<td>AGCO & GLNR</td>
<td>163D7008 29 cc 1.77 ci</td>
<td>27394</td>
<td>1-1/8"</td>
<td>83013657 17cc 1.04 ci</td>
<td>28030</td>
<td>11/16"</td>
</tr>
<tr>
<td>CAT</td>
<td>163D70011 22.5 cc 1.37 ci</td>
<td>27393</td>
<td>7/8"</td>
<td>80004978 12.6 cc 0.77 ci</td>
<td>28220</td>
<td>1/2"</td>
</tr>
<tr>
<td>CANAM</td>
<td>163D70010 31.8 cc 1.94 ci</td>
<td>27395</td>
<td>1-1/4"</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Check or Adjust Knife Relief Pressure

CAUTION Engage parking brake on combine, shut engine down, and wait for all moving parts to stop before leaving cab.

1. Jam a wood block tightly in the knife, between a guard and a cutting section.
2. Restart the combine, engage the feeder housing and check the pressure on the gauge. The relief pressure should be 3000 psi (may be closer to 2800 psi on single pump units). If adjustments are required, proceed as follows:

CAUTION Engage parking brake on combine, shut engine down, and wait for all moving parts to stop before leaving cab.

3. Locate the relief valve on the side of the Knife Drive Pump. Loosen lock nut and turn the relief screw counterclockwise to increase pressure, clockwise to decrease. Adjust the relief screw 1/4 turn at a time in the appropriate direction.

4. With the knife still jammed, restart the combine, engage the feeder house drive and check the pressure on the gauge.

WARNING Be sure all bystanders are away from the machine prior to engaging the header.

Repeat the above steps until the desired pressure reading is attained.

IMPORTANT The relief pressure should not exceed 3000 psi (2800 psi in single pump units). Exceeding this pressure could cause damage to the pump and the hydraulic system.
Draper Operating Pressure

The pressure indicated on the draper flow-control gauge is the amount of force required to pump oil through the draper circuit. When the flow-control dial is set to zero, the oil is diverted through the “T” (CanAm-“EF”) port of the flow-control which returns it directly to the tank. When the flow-control dial is set to full, all the oil goes through the “R” (CanAm-CF) port, through the draper motors and then returns to the tank. Adjust this lever to achieve the desired draper speed.

The flow-control is equipped with a relief valve, which is factory preset at 3000 psi (CanAm 2200 psi). If the operating pressure is consistently at or near this range, oil will bypass over the relief to the “T” port. When oil is bypassed over the relief, heat is generated. If this condition is excessive, the oil may over-heat. Damage to the pump and motors may result. This setting is non adjustable, and tamper proof.

CanAm Note: When oil flows over the relief valve, an audible squeal may be heard from the flow-control. To adjust for these:

1. Remove the cap over the relief adjustment screw. Loosen the lock nut. Check draper operation after adjusting relief ¼ turn.
2. Turn the internal screw clockwise to increase the pressure, counter-clockwise to reduce it.
 DO NOT adjust relief by more than ¼ turn before testing the results.

If the draper pressure is high, check:

1. That the draper tension is not too tight.
2. That material is not wrapping around rollers. Clean rollers as required.
3. Bearings in drive and idler rollers. Replace as required.
4. Oil pressure with tension on draper released (motors running free). Continued high pressure will indicate a faulty draper motor. Replace as required.

If a faulty draper motor is suspected:

1. Let the system cool down.
2. Start up and run draper at full speed. Record the reading on the pressure gauge.
3. Look for motors that seem to be running more slowly.
4. Check the temperature of each motor to see if one is hotter than the others.
5. SHUT COMBINE DOWN.
6. Grab the drive roller of a deck with both hands and rotate the roller back and forth. If the motor is difficult to turn, disconnect these hoses and install a fitting to bypass the suspect motor.
7. Restart the combine and run the draper. Record the difference in draper pressure, and observe whether the draper speed of the other decks returns to normal.
8. If the differences are significant, replace the motor.
Bleeding Air Out Of Reel Lift Circuit:

If the reel does not go up or down evenly, it may be necessary to bleed the slave cylinder. Complete this procedure only when header drive is disengaged and header is on the ground. Lower the reel to the bottom of the cylinder stroke. The reel cylinders have a center to center collapsed length of 24”. Fully extended, cylinder length is 40”.

There are two methods of bleeding the system, they can be found on the following page.

A: Static Method.

1. Cycle the reel up to the top of the stroke.
2. Cycle reel down but stop reel when about 2” of cylinder rod is still exposed and before cylinders reach the bottom of their strokes.
3. Shut combine down. It is best to wait for 10 to 15 minutes so air bubbles in the oil can dissipate.
4. Using a screw driver or a wrench (depending on the style of cylinder), loosen the bleed port hex cap on the slave cylinder (far right hand cylinder). Air and oil will escape, and the reel will drop.
5. Tighten bleed screw (cap) and cycle reel. Repeat this procedure again if necessary.

B: Alternate method

1. Lower the reel to the bottom of its stroke.
2. Shut combine down.
3. Using a screw driver or a wrench (depending on the style of cylinder), loosen the bleed port hex cap on the slave cylinder (far right hand cylinder).
4. Start combine and lift reel until cylinders are fully extended and the air has escaped from slave cylinder.
5. Lower the reel, shut combine down and tighten cylinder head on slave cylinder.
6. Cycle the reel and repeat procedure if necessary.

Because of expansion in hydraulic lines, it is normal for the right hand slave cylinder to lag slightly when lifting reel.
Reel Position

Hydraulic Fore & Aft

All header reels are equipped with hydraulic fore and aft, controlled from the combine. This feature allows the operator to move the reel assembly forward and backward.

The combine must be equipped with the fore/aft control to make this option functional.

Split-Reel Lift Hydraulic Circuit

Pressure from the combine feeds the barrel end of the left cylinder. As the barrel rises, oil on the bottom side of the piston is forced out of the rod end port, into the rod end port on the center cylinder. The cylinder piston rises and oil from barrel end port of center cylinder is forced out into the barrel end of right cylinder. As the right cylinder piston rises, oil is forced out of the rod end port into the reel return line, and back to the combine hydraulic reservoir. To lower the reel, a check valve assembly located on the combine opens to allow oil to free flow in reverse due to the weight of the reel.

Solid Reel Lift Hydraulic Circuit

Pressure from the combine feeds the barrel end of the left-hand cylinder. As the cylinder barrel rises, oil below the piston is displaced. The volume of the rod on the left cylinder matches the volume of the barrel on the right cylinder. The displaced oil causes the right cylinder to raise. This cylinder has a vent to bleed air from the system.

Reel Arm Leveling and Height Adjustment

Reel Height Adjustment

Headers are equipped with adjustable reel height stops, which limit how much the reel can be lowered, and how close the reel can come to the header. These stops are located behind the reel-lift cylinders.

To adjust the height limits:
1. Start the combine, and with the header fully lowered, raise the reel to maximum height.
2. Engage the emergency brake, shut combine down, and allow all moving parts to come to a complete stop before exiting the cab.
3. Remove lock pin from left side reel height control arm, and place into the desired location (hole). Ensure that pin is fully engaged and locked in place with the safety clasp. Perform fine adjustment with Fine Adjustment nut. Take note of the exact location of the pin.
4. Repeat this procedure for right side of the header, ensuring that this pin is inserted at the same height as the left side.

5. If your header has a split (double) reel, the center reel height stop will also need to be adjusted. The holes for the center stop, however, do not correspond with the outside stops. For this reason, it must be adjusted visually, using the primary holes first, then the fine adjustment, if required, in order to obtain a level reel. For safety purposes, all adjustments to the center reel arm should be made from the rear of the header.

6. Restart combine, and slowly lower the reel to it's lowest position. Ensure the reel tines will not contact any part of the deck, draper, or cutter bar.

WARNING

When servicing the reel, it is necessary to have the reel locked into the servicing (highest) position, with the lock pins securely in place. When the reel is set for short crops, and the fore-aft control is retracted, the reel will contact the feather plates, and draper, causing increased wear.

Reel Centering

Measure the clearance from the end shield on the reel to the crop divider on each end of the header. See the illustration below.

If the reel is not centered on the header, proceed as follows:

1. Fully lower the table and reel, and engage parking brake.
2. Turn combine off and allow all moving parts to come to a complete stop before exiting the cab.
3. Loosen the carriage bolts that secure the reel arm braces on both ends of the reel.
4. Push the reel arms until reel is centered.
5. Tighten bolts when centered. (See Illustration 9-11: Reel Arm Brace).

Placement of the Reel on the Header

The distance from the tip of the guard to the tip of the reel tines can be adjusted from 1” to 12” (300 mm) depending on the crop.

- Normally the more “down” the crop, the further ahead the reel should be set.
- Setting the reel too far ahead will not push the crop into the knife will be cut, nor will it efficiently deliver it onto the draper.
- Set the reel tines the same distance from the guards on both ends.
- Adjust the reel height stops so that the tine tips will miss the guards and sickle by at least 1” with the cutter bar fully raised, to avoid cutting tines, and breaking knife sections.
- Normally the more “down” the crop; the closer the tines will need to be placed to the cutter bar, down to this 1” minimum.
• Set the reel tines the same distance from the guards on both ends.
• Adjust the reel height stops so that the tine tips will miss the guards and sickle by at least 1" with the cutter bar fully raised, to avoid cutting tines, and breaking knife sections.
• Normally the more “down” the crop; the closer the tines will need to be placed to the cutter bar, down to this 1” minimum.

Reel Position in Down Crops

• The reel height in down crops should be low enough that the tines can lift the crop up and onto the cutter bar.
• The tines should be adjusted so they pick up the crop and lift it onto the cutter bar with a minimum of the crop carrying around the reel.
• The fore and aft position of the reel should be adjusted so the reel center tube is about 12 inches (300 mm) in front of the cutter bar so the crop is lifted before it gets to the cutter bar.

Care must be taken to ensure that the reel tines do not come in contact with the cutter bar. Tine contact will cause damage to the tines, knife sections, and guards. At no time should the reel tines contact the ground. Contact with the ground or with rocks will cause damage to the reel.

Reel Position in Standing Crops

The reel height on standing crops is usually correctly adjusted when the reel bat contacts the crop about midway between the cutoff point and the top.

The reel should be adjusted fore and aft so the reel center tube is slightly ahead of the cutter bar. If the reel is too far forward, the crop will not be pushed against the cutter bar and a portion of the cut crop will fall to the ground. If the reel is too far back, the crop is pushed down too low when it is cut and some of the heads will be missed.

Universal – UII Pick-Up Reel: Tine Pitch Adjustment

Plastic reel tines are attached to the leading side of the reel bats with 1/4” bolts and nuts. To adjust the pitch of the tines, proceed as follows:

1. Loosen the bolts (shown right) at both ends of the reel and insert a suitable tool into the tube.
2. Partially rotate the control ring assembly, noting the change in tine pitch on the tines nearest the cutting bar.
 • To increase the pitch of the tines, turn the ring in the direction of reel rotation.
 • To decrease the pitch of the tines, turn in the opposite direction to reel rotation.
3. Re-tighten bolts at both ends of the reel.

Adjust tine pitch initially so tines are perpendicular to the cutter bar. Too great a pitch may cause the cut crop to be scooped up and carried around the reel.

For crops that are down or lodged, adjust reel so that center of reel is ahead of cutter bar, and adjust tines to be more aggressive, lifting the crop, yet dropping it onto the draper decks after cutting.

If the crop starts to wrap around reel, this indicates the need to adjust the tines to a less aggressive setting.

Tine pitch is critical to the operation of the header. Adjust the tines to suit your individual needs and make note of the best settings for each of the crop conditions you encounter.
NOTE!

Tine pitch must be the same at both ends of the reel.

If crop is building up in the center of a split reel, the fingers/tines may be heated and bent slightly to ensure the crop does not build up at the gap.

Hart-Carter (HCC) Reel

The HCC reels supplied with the swather are 6-bat reels, with plastic tines. The tines are fastened around steel bat tubes using 7/32” metal screws. The bats pivot within plastic bearings that are located at the ends of each reel arm (spoke).

To adjust the pitch of the tines, refer to the illustrations and instructions below.

HCC Reel – Tine Pitch Adjustment

1. Locate the tine pitch adjustment levers, and tine-pitch adjustment bolts, located at both ends of the reel.

2. Loosen the adjustment bolts, and then move the adjustment levers accordingly to set the desired pitch. (*Hint: Start reel with a pitch of about 5° as shown.)

3. Re tighten the adjustment bolt, securing the pitch setting.

Ensure that the adjustment bolts & levers are set to the same relative position for each side. Too great a pitch causes reel to wind with cut crop because the tines do not release the crop after it is cut.
6 – Draper and Decks

Depending on the options purchased, there are two lateral drapers on the table which move the crop to the opening. All drapers must be set, and maintained properly to perform well. Quick release adjusters with spring tensioning allow easy access for cleaning, and maintain proper draper tension. Unpack the draper. Check the size to ensure it is correct for the size of the deck.

ATTENTION

Lower the swather to the ground or onto stable blocks, whichever provides the most comfortable working height.
Raise the reel to its maximum height and place the locks on the reel lift cylinders to prevent the reel from falling.

Lining Up the Idler Roller

Prior to installing the draper, ensure that the idler roller (the draper roller without the motor) is properly aligned. This is done by setting the end of the offset plate flush with the c-channel of the deck. Adjust the eye bolt until the end of the idler plate contacts the stop on the offset plate if not so already.
Once extended, you should make sure that everything is parallel. The easiest way to do this, is to measure the distance between the roller and the closest cross brace on the draper deck. Make sure measurement “A” is the same distance as measurement “B”. If it still does not line up, you may adjust the eye bolt again.

Draper Installation

1. Make sure that the quick release lever is in the open position prior to installing the draper on the deck. The location of the lever is shown on “Deck Tensioning - Illustration B - Page .” on page <OV>.

2. Place draper bundle on the top of deck runners, and unroll with the slats facing up. Be sure to align the v-guide with the notched side of the roller toward the rear end of the swather.

3. Wrap draper around one of the rollers and feed draper into the bottom runner of the deck. The bottom runners will support the draper, and prevent it from hanging down.

4. Pull draper through bottom runner, and wrap around the other roller. Pull the ends of the draper together. Install a connector bar to close the joint. Take note of the position of the rounded corners on the connector bar.

5. The heads of the screws for the connector bar should be installed from the centre opening side. This helps prevent the crop being caught on the screws. Complete the installation by adjusting tension and tracking as described on the following pages.

6. Once the draper is installed on the draper deck, close the quick release lever (shown on following page) to apply tension to the draper.
Tensioning

Proper tension must be maintained on the draper to prevent slipping on the drive rollers. The draper tension is changed by adjusting the drive roller of each deck.

Spring Tension Indicator

The spring tensioners are equipped with a spring length indicator to show the proper amount of tension that should be applied when the decks are tensioned, prior to field operation.

For proper tension, the tip of the indicator should be even with the end of the spring. This allows for good draper tension, while still having spring compression left over for crop loads on the draper.

To check if tensioning is required:
• Engage the power unit drive with the engine at low idle.
• Observe from the cab how the drapers are tracking.

If adjustment is required, lower the swather to the ground, raise the reel and lock in place. Shut down the swather, and turn off the engine before exiting the cab.

If tensioning is still required:
• Adjust the tension by turning the adjuster bolt (Quick Release doesn’t need to be released when adjusting).
• Turn the adjuster bolt clockwise (shorten the bolt) to decrease tension, or counter-clockwise (lengthen the bolt) to increase tension.

When increasing tension, do not compress the spring past the indicator tip.

Restart the windrower and repeat the running test. Re-adjust as necessary.

NOTE!

ATTENTION

CAUTION

Tracking

The draper must track properly on the rollers to avoid damage to the drapers. The draper decks allow for approximately ¼" clearance on each side.

Idler Roller Tracking Adjustment

This roller is fixed at the cutter bar, so is adjustable only at the back panel. If the draper is tracking toward the back panel, tighten the nut on the eye bolt (shorten the eye bolt). This will push the idler mount plate and idler roller at the back panel end out, creating more slack in the draper at the cutter bar.

If the draper tracks toward the cutter bar, lengthen the eye bolt. This will pull the idler mount plate and idler roller in, creating slack in the draper at the back panel end.

The draper will track to the slack side.
Drive Roller Tracking Adjustment

There is no direct adjustment for tracking on the drive roller end. It is self tracking by way of the v-guide in the drive roller and tensioning system.

Draper Speed

Proper draper speed is critical to the performance of your Grain Belt Header. The draper speed should be balanced with the field speed of the combine to deliver the material smoothly to the center draper. The speed of the lateral deck drapers and the center deck draper is controlled by an adjustable flow control. Adjusting this control will affect all decks. When using the header as a swather the draper speed should be set to form a good windrow, to remove the cut crop from the cutter bar and to deliver it smoothly to the opening.

Things to Observe while cutting

1. Excessive draper speeds may form a poor swath. The heads tend to be thrown to the center and can fall through the stubble.
2. Draper speeds that are too slow for the field speed tend to overload the decks with cut crop and can result in plugging the cutter bar. In lighter crops, the swath is often too open and may fall through the stubble, making it difficult to pick up.
3. Experiment with different draper and field speeds to obtain the best swath formation for the cutting conditions. It may also be necessary to make adjustments as conditions change.

Avoid over-speeding the draper. Excessive draper speed will cause premature wear and shorten draper life significantly.

Draper Speed - Feeder Deck

On all headers with combine driven reels the feeder deck draper drive motor is plumbed in parallel with the lateral draper deck drive motors. Both draper circuits are controlled with one flow control. Adjusting the flow control will change the speed of the feeder draper as well as the lateral draper.

Any adjustment to the flow control will affect the lateral and center draper.

Center Draper - (Rearward Feeding)

Proper tension must be maintained on the draper to prevent slipping on the drive roller. The draper tension is changed by adjusting the idler roller at the front of the deck.

Adjusting Center Draper Tension:

When the draper is correctly tensioned, you should be able to lift the side of the draper approximately two inches without effort.

Draper tension can be easily modified by releasing the quick lever, located on the side of the draper deck, and adjusting the spring loaded rod assembly accordingly. Lock the quick lever to re-apply the tension onto the draper.

Do not over-tighten the center draper; it should only be tensioned enough to prevent it from slipping on the drive roller. Over-tightening will decrease draper life and may cause premature failure of the rollers.

ATTENTION

Idler Roller Adjustment - Illustration A - Page 79

Draper Slack - Illustration A - Page 79

ATTENTION
Draper Splicing

Honey Bee Mfg. strives to provide top quality draper material on their products. Our draper is made from rubberized polyester with fiberglass reinforced slats. Regular maintenance will extend the life of your draper. Proper tension and tracking are very important. If material builds up inside the deck, it will wrap around the idler and drive rollers causing the draper to tighten. As the draper tightens, additional stress is put on the motor and the draper. If this condition is not corrected, it will result in failure of the drive roller motor or the draper. Tears in the draper can be caused by poor tracking, foreign materials, or from careless use. If only a portion of draper is damaged, a splice may be installed.

Before beginning this repair, you will need an additional connector bar set and a section of draper that is at least 2 ½” longer than the piece to be removed.

If the damaged section is not near an existing connector bar, you will need 2 connector bar sets and a piece of draper 5” longer than the damaged piece.

1. Raise swather table and install lift cylinder locks. (If this is too high for comfortable access, the table can be set on blocks or lowered to the ground.)
2. Raise the reel and place the locks on the lift cylinders to prevent the reel from falling.
3. Release the draper tension.
4. Remove draper connecting bar.
5. Correct the cause of the draper failure.
6. The draper should be cut midway between two slats to provide ample material for the new join. With a measuring tape, measure, and mark a line six inches from a slat on a good portion of the draper. Place a board directly under the line you have marked, to support the section you will be cutting. With a utility knife and a straight edge cut the draper along the marks. This cut must be accurate, and square, to assure that the draper will track properly. Repeat this step on the other side of the damaged area.
7. Lay the piece you have removed flat, and measure the width, then add 3 1/2 inches. The total will be the length of material you require for the splice. (If you need two new connector bar sets, add 5”.)

NOTE!

8. To mark the location for holes, measure 1” in from each edge to be joined, and mark a line parallel to the cut edges.
9. On each of these lines, measure 1-1/8” from the front edge of the draper, and make a mark for the first hole.
10. Drill 3/16” holes through each mark.
11. Place the backs of the draper together, lining up these drilled holes.
12. Place a connector bar on each side, line up the holes, and secure with a machine screw and nut.
13. Match up the edges of the draper and drill a hole at the opposite end on the 1” line, using the connector bar as a template. Insert a screw and secure in place. Drill the remaining holes through the holes in the connector bar, insert screws and secure.
14. Adjust draper tension. Trim all joins to 1/2” above connector bar.
15. Adjust tracking.

Idler Roller Removal

1. Relieve draper tension using the quick release lever.
2. Remove the nut, washer, spacer and bolt that holds the eye bolt and idler plates in place.
3. Slide the idler plate with the eye bolt out of the c-channel as far as possible.
4. Pull the offset plate away from the roller end, letting the roller drop down.
5. Pull the idler roller out of the deck.
6. Check bearings on each end and remove any material build-up on the roller.
7. Re-assemble in reverse order. See “Lining Up the Idler Roller” on page <OV>, adjust tension and tracking as necessary.
Drive Roller Removal

1. Relieve the draper tension using the quick release lever.
2. Mark hydraulic hoses on draper motor. Remove hoses. Insert plugs into hoses and caps on the motor to reduce oil loss and to prevent contamination.
3. Remove the lock nuts that secure the motor onto the motor plate. It is not necessary to remove the adjuster bolt from the motor plate.
4. Pull the motor with drive roller through the hole in the motor plate.
5. Check bearing in end of roller, and remove any build up of material on roller.

NOTE!
Check and remove any built up material from the draper deck runners. If necessary, split draper at connector bar to gain access to inside of the deck. To re-install drive roller, reverse above procedure. Adjust tension and tracking as necessary.

Removing Draper Motor

1. Remove Hex Bolt set screws.
2. Insert two pry bars one on each side of motor, and pry motor out of drive roller. Do not hammer on the housing flanges of the motor. Damage to motor will void warranty.
3. If motor does not move, insert a 7/8” or 3/4” rod through the center of drive roller and apply force directly to the shaft of the motor.

Replace Bearings on Drive Roller

The roller bearings are pressed into the rollers with a friction fit and held in place with a retaining ring.

1. Remove seal that holds the bearing assembly in place. Be prepared to replace the seal with a new one upon replacement.
2. Remove the snap ring that secures the bearing in place.
3. On the opposite end of the roller from the bearing to be removed, insert a small rod through the inside of the roller and push the bearing out.
4. Drive bearing out with the rod.
5. Install new bearing, and replace the retaining ring and seal.

Replace Bearings on Idler Rollers

The roller bearings are pressed into the rollers with a friction fit and held in place with a retaining ring.

1. Remove seal that holds the axle and bearing assembly in place. Be prepared to replace the seal with a new one upon replacement.
2. Remove the snap ring that secures the bearing and axle in place.
3. Grab the axle and pull it out of the roller, ensure that you pull the side with the hexagon end out first.
4. On the opposite end of the roller from the bearing to be removed, insert a small rod through the inside of the roller and push the bearing out.
5. Install new bearing, and replace the axle, snap ring and seal.
Installing Draper Motor

1. Clean motor shaft and hub of drive roller. Apply anti-seize to shaft.
2. Insert key in motor shaft.
3. Insert motor into hub, lining key on shaft with the key-way in the hub. Do not use a hammer on housing flange; damage of this nature to the motor will void warranty. Use a soft blow or rubber hammer to apply force to end of motor.
4. Tighten set screws.

Draper Deck Maintenance:

- Remove draper connector bar.
- Remove draper - clean draper of debris, both sides.
- Store draper indoors.
- Clean debris from rollers, deck channels, and runners.
- Check and bend down corners of deck runners so draper does not get caught.
- Clean adjusters; lubricate guide tubes and adjuster tubes. Adjusters should move freely inside the guide tube.
- Check idler roller bearings; they should spin freely.
- Check drive roller bearings.
- Check bearing stubs.

NOTE!

If you elect to store the swather outside with draper installed, position the connector bar on the underside to aid water drainage. Ice build-up underneath could cause draper to sag and drop out of the lower runner. If this is not noticed and corrected, damage may occur to draper on start-up.

Center Feed Auger

The center feed auger receives the material from the center draper and propels it into the feeder housing of the combine. The adjustment of the fingers, as well as the height of the auger, is critical for the optimum transfer of material into the combine feeder house. This adjustment may need to be changed for different crop types and conditions to maintain an optimum flow of material from the drapers into the feeder house.

Standard Adjustments

Adjust the auger fingers to clear the pan or pan inserts by approximately ¼" (6mm) to ½" (13mm). This is the recommended minimum clearance. Some crops may require greater clearance, and you may find other settings that suit your operating conditions better.

Before proceeding with the following adjustments, lower the combine header completely to the ground or raise header to its full height and put feeder house cylinder locks in the place, whichever position will give you the most comfortable access to the center auger.

IMPORTANT

Engage the parking brake on the combine, shut engine down and wait for all moving parts to stop before leaving the cab.

Finger Extension Adjustment

The extension - retraction action of the fingers is adjustable to suit the type of crop being harvested.

To adjust the extension/retraction of the fingers:

1. Locate timing plate arm (1) on the right-hand end of the auger adapter
2. Loosen lock bolt (2).
3. Pull the timing plate arm backward to increase the finger extension toward the top and back of the auger drum.
4. Push the timing plate arm forward to increase the finger extension toward the front of the auger.
5. When proper indexing is achieved, re-tighten lock bolt (2).
Auger Drum Height Adjustment

The feed auger floats in the adapter frame. Stop blocks located at the front of the auger adapter frame restrict the minimum and maximum height. The clearance between the fingers, flighting of the auger drum and the pan of the adapter frame can be adjusted as follows:

1. Loosen lock bolts (1) and (2) on the auger height adjustment bracket, at both ends of the adapter frame.
2. Locate vertical adjustment bolt (3), on each end of the adapter frame, and loosen the lock nut on the bottom of the bolt.
3. Hold the carriage bolt still while turning the top nut. Increasing the length of the bolt will lift the auger, shortening it will lower the auger.
4. Adjust both ends the same so full length of auger will run parallel to the adapter pan.

When the desired clearance is attained, tighten the lock nuts on adjustment bolt (3), and lock bolts (1) and (2) on the height adjustment bracket.

Fore – Aft Adjustment of the Center-Feed Auger

The auger drum can be adjusted forward and backward by moving the carrier arm. The slotted hole in the carrier arm allows about 2" (50mm) of travel. Care should be taken to ensure that both sides are adjusted by the same amount. When moving the auger drum ensure that the auger flighting and the auger fingers do not contact the feeder chain on the combine or the draper on the feeder deck.

Adjust the clearance as follows:

1. Locate the adjustment bolt (#1) on each end of the auger adapter frame. To decrease the clearance between the adapter frame and the auger; loosen lock nut (#2) and turn lock nut (#3) clockwise.
2. To increase the clearance, reverse this procedure.
3. When the desired clearance has been attained, re-tighten lock nuts (#2) and (#3).

For proper performance of the finger auger, each end of the auger should be adjusted with the same amount of clearance along the full length of the auger.

Slowly rotate finger auger by hand to be sure the flighting and the fingers do not contact the feeder house, shrouds, feeder chain, drapers, or header decks. Damage to the combine or header arising from improper adjustment **WILL NOT BE COVERED BY WARRANTY.**
Auger Drive Assembly Adjustment

The auger drive assembly and the chain case mount are located on the left-hand side of the sub-frame. The chain case mount is secured to the sub-frame by two 5/8” u-bolts, which provide height adjustment.

Alignment of the drive line should be checked before operating the header. The telescoping drive line is equipped with universal joints at each end, so minor misalignment is acceptable up to 25 degrees. Try to keep the drive line (from feeder house to the gearbox) adjusted as straight as possible.

As the operating angle of the drive shaft increases, the life of the universal joints will decrease.

Drive Line Adjustment

It is important to minimize the angle that the drive lines are operating at. The shallower the angle, the longer the lifespan of the drive shaft. Ensure you have enough overlap in the drive line sleeves.

If necessary, loosen the two U-bolts, and move the entire unit up or down.

When changing to another combine, it may be necessary to loosen the U-Bolts on the chain-case mount and lift the complete assembly to achieve proper alignment.

Chain Tension Adjustment

1. Remove the chain case shield from the auger drive assembly.
2. Loosen the idler sprocket, insert a pry bar into the bolt slot.
3. Apply downward pressure to the idler sprocket with a pry bar until approximately ½” (13mm) to ¾” (19mm) of slack remains along the bottom run of chain.
4. Tighten the idler sprocket, and recheck the tension. Do not over-tighten the chain!
5. Reinstall, and secure the chain case shield.

CAUTION

Drive Line - Walterscheid

For information on the installation, service, and safety instructions for input drive lines and clutches refer to the owner’s manual shipped with each drive line. These instructions are intended to point out some of the basic safety situations which may be encountered during the normal operation of your machine and to suggest possible ways of dealing with these conditions. Read the manufacturer’s owner’s manual before attempting to operate the equipment. If there are no manuals with the machine, request them from the manufacturer. Study them before you start work. If there is something in the manuals you don’t understand, ask your supervisor or equipment dealer to explain it to you.

Operating the PTO

When closing down operation of PTO driven equipment, shift PTO control to neutral, shut off the engine and wait until the PTO (feeder house) stops before getting off the combine. Do not wear loose fitting clothing or long, free hanging hair when operating the power take-off, or when near any rotating equipment.

- To avoid injury do not clean, adjust, unclog, or service PTO driven equipment while the combine engine is running.
- Never exceed the recommended operating speed of the equipment.
- Implement input drive lines, clutches and freewheels are designed for specific machine types and power requirements. They must not be replaced by any shaft other than that recommended by the implement manufacturer. Always ensure that the implement input drive line is securely connected at both ends. Only operate a drive system when all safety guards are in place. PTO safety systems include: the combine master shield, the implement input drive line guard and the implement shielding.
- If any component of the guarding system has been removed for any reason, it must be replaced or repaired prior to operating the machine.
- Note the maximum drive line operating length. The implement input drive line should not be extended by more than half the available telescoping overlap.
- Drive line universals should not be operated with greater than 25 degree angles.

NOTE!

IMPORTANT

NOTE!
Drive Line Lubrication

In as delivered condition, Walterscheid PTO drive shafts are greased and ready for operation. For subsequent lubrication of the PTO drive shafts, use lithium base saponified high quality grease with E.P. additives.

ATTENTION Do not use grease agents containing MoS2!

Regardless of the operating hour total, the system should be lubricated at the end of every season. Especially when a high-pressure cleaner has been used, lubrication is required immediately to force out any water that may have penetrated into the joints.

Lubricate with quality grease before starting work and every 50 operating hours thereafter. Clean and grease the implement input drive line before each prolonged period of storage.

Molded plastic nipples on the guard near each guard bearing are intended as grease fittings and should be lubricated every 50 hours of operation if the guard is chained so that it does not rotate.

Telescoping members must have lubrication to operate reliably regardless of whether or not a grease fitting is present. Telescoping members without grease fittings should be pulled apart periodically, and grease should be added manually. Check and grease the guard tubes at the end of each season to prevent seizing.

ATTENTION Two (2) Drive Line Lubrication Points

![Image](https://via.placeholder.com/150)

Grease Center Sleeve

Illustration A - Page 90

Coupling the input drive line

Clean and grease the PTO and implement input connection.

Drive Line Lock

1. Pull locking collar back towards the drive shaft.
2. Push the implement input drive line onto PTO shaft of the power unit until the locking device engages.

Check to ensure all the locks are securely engaged before starting work with the implement input drive line.

The chain is intended to prevent the guard from rubbing against non-moving parts, thereby reducing premature wear and damage. With proper maintenance, a properly installed chain will increase the service life of the guard.

Chains must be attached to allow sufficient articulation of the shaft in all working positions. Care must be taken to ensure the chain does not become entangled with nearby components during operation or transport of machine. The chain is not designed to carry the weight of the implement input drive line. Damage will occur if it is suspended by the chain.
Drive Line Guard Dis-assembly

1. Remove locking screw.
2. Align bearing tabs with cone pockets.
3. Remove half-guard.
4. Remove bearing ring.

Drive Line Guard Assembly

1. Grease yoke groove and inner profile tube.
2. Fit bearing ring in groove with recesses facing profile tube.
3. Slip on half-guard.
4. Turn cone until it engages correctly.
5. Install locking screw.

Replace Cone:

1. Disassemble guard as shown previously.
2. Remove old cone (e.g. cut open with knife).
3. Remove chain.
4. Place neck of new cone in hot water (approximately 80 C/180 F) and when heated, pull onto bearing housing.
5. Follow the assembly instructions listed above.
6. Reconnect chain.

Guards are designed to protect the user. Defective and damaged guards must be repaired or replaced immediately.
Dismounting Draper Table from Combine

There are three methods of removing the draper table, which differ only in the equipment used to support the header after it is removed from the combine:

1. **Quick Dismount**, without using either transport axle package.

2. **Integral Axle Dismount**, which utilizes the Integral Axle Transport package. Refer to Dismount Header onto Integral Axle.

It is important to dismount the draper table properly from the combine for four reasons:

1. Safe storage.
2. Ease of remounting.
3. Readiness for transport.
4. To avoid possible damage to the draper table and combine.

WARNING Keep bystanders away from the machine, especially children as you complete these operations. Select a storage site away from human activity.

Preparing For Dismount

IMPORTANT Park the combine on hard, level ground. Engage the park brake.

1. **Start the Combine:**
 a. Lower the reel to its lowest possible position.
 b. Raise the header to its fully raised position.

2. Disconnect telescoping drive line from bottom left feeder housing shaft and secure in the storage bracket.

3. Uncouple Multi Link (or individual hydraulic lines) connecting the draper table to the combine. Secure the hydraulic lines so they are clear of any moving parts or the ground.

4. Disconnect all wires from the combine to the draper table. Ensure they will not catch on the combine or the header when the combine is backing away from the draper table.

5. Lock the sub frame and the header together by shortening both the left and right restrainer chains as much as possible, which will support the sub frame in the quick dismount position.

6. Remove all locks, pins/bolts which hold auger adapter to the feeder house of combine.
Quick Dismount

ATTENTION Before starting these steps, ensure that you have fully completed the “Preparing For Dismount” section of this chapter.

1. Lay two (2) blocks (4” x 4” x 16”) or (6” x 6” x 16”) directly under the cutter bar, aligned with the two table struts located closest to the end of the header.

2. Remove the feeder house cylinder locks.

3. Start the combine. Lower the header to about 12” above ground.

4. Dismount from the combine and check position of blocks to be sure they will contact the cutter bar.

5. Lower the table onto the blocks.

6. If header table is equipped with gauge wheels, the gauge wheels will support the back end of the table.

NOTE! If gauge wheel spring tube is not shortened, the sub frame may tilt forward too far when released from combine, making it difficult to pick up.

7. If not equipped with gauge wheels, place blocks under the sub frame. Ensure they will fully contact the sub-frame and support it stably at a suitable height.

8. Restart combine and slowly lower header onto blocks. When cutter bar contacts blocks, check position of blocks to be sure that cutter bar is making solid contact, and the blocks are laying absolutely flat so header will not slide off once the combine has been removed from header.

9. Restart combine continue to lower the feeder house until it is totally retracted from the auger adapter frame.

10. Slowly back combine away from the header. Be sure that header does not move backwards with the combine. If it does, shut combine down completely. Recheck to be sure all pins have been removed.

NOTE! In the Quick Dismount position, the sub frame should be vertical or tilted slightly back toward the combine. This will make re-mounting easier.

Integral Axle Header Dismount

ATTENTION Before starting these steps, ensure that you have fully completed the “Preparing For Dismount” section of this chapter.

1. Lift transport axle out of the storage pocket, and slide it into the transport bracket. Secure it with the locking pin.

2. Remove the transport axle riser from the bracket by pulling the lock pin and lifting upward. Turn it over, and reinsert it into the bracket from the bottom. Secure it with the locking pin.

3. Install the rear wheel assembly, and secure with the safety clip. Install the front wheel assembly, and secure with the safety clip.

 - If your header has gauge wheels installed, remove the wheel assemblies and install them on the transport axle.

4. Slide the transport hitch tube out of the storage sleeve. Remove the hitch jack from its storage bracket and secure to the hitch mount. Ensure both lock pins are secured.
1. Ensure that it is safe to do so, and remove the cylinder locks from the combine.
2. Restart combine and slowly lower header to the ground. Ensure that the wheels and transport hitch jack come into full contact with the ground.
3. Restart combine and slowly lower the feeder house until it is totally retracted from the auger adapter frame.
4. Slowly back combine away from the header. Be sure that header does not move backwards with the combine. If it does, shut combine down completely and ensure all pins have been removed, and that everything is properly disengaged.
5. Raise or lower the hitch jack to level the table.

ATTENTION Ensure that the safety lock pin and safety clip are properly installed so the hitch jack is securely fastened to the hitch tube.

Standard Axle Header Dismount

Before starting these steps, ensure that you have fully completed the “Preparing For Dismount” section of this chapter.

1. Place the transport axle under the header, with the strut oriented to the cutter-bar side (front) of the header.
2. Lift the front of the axle and hook the tabs on the top of the strut tower onto the lip at each side of the header strut.
3. Remove the pin from the top U-bracket. Lift the rear of the axle into position and reinsert the pin.
4. For headers without gauge wheels, remove the safety pins, install the tire and wheel assembly into the axle, and reinsert the safety pin.
5. For headers with gauge wheels, remove the right hand gauge wheel assembly from its mount and install it in the rear spindle mount of the transport axle. Secure it with the safety pin. Remove the left hand gauge wheel assembly from its mount and install it in the front spindle mount of the transport axle. Secure it with the safety pin.
6. Slide the transport hitch tube out of the storage sleeve. Remove the hitch jack from its storage bracket and secure to the hitch mount. Ensure both lock pins are secured.

7. Ensure that it is safe to do so, and remove the cylinder locks from the combine.
8. Restart combine and slowly lower header to the ground. Ensure that the wheels and transport hitch jack come into full contact with the ground. Continue to lower the combine until the feeder house is completely retracted from the auger adapter frame.
9. Slowly back combine away from the header. Be sure that header does not move backwards with the combine. If it does, shut combine down completely and recheck to be sure all pins have been removed, and that everything is properly disengaged.
10. Raise or lower the hitch jack to level the table.

ATTENTION Ensure that the safety lock pin and safety clip are properly installed so the hitch jack is securely fastened to the hitch tube.
Optional Equipment

Cross Auger

The cross auger can be beneficial for handling specialty crops such as peas, canola, mustard, safflower, and lupins. Many of these crops are not heavy enough to keep them firmly on the draper. Crops that are bushy or have vines tend to ride above the draper as the canvas moves under them. This often causes them to enter the feeder house in bunches or wads.

The cross auger features left and right hand flighting which gently pushes the crop down onto the draper while moving it toward the feeder deck and feed auger.

The cross auger is suspended above the decks of the header on mounting brackets.

The cross auger is plumbed into the draper circuit with a manual speed control (needle valve). The speed of the cross auger should be adjusted only enough to keep the crop moving. If the cross auger rotates too quickly, wrapping may occur.

The cross auger can be left in position even if it is not being used, such as when harvesting cereal grains. The cross auger can be turned off by fully opening the needle valve. This should not affect the draper speed.

Swath Option

Honey Bee Grain Belt Headers SP36, SP40 and SP42 are available with a swath option package. The manual swath option allows the operator to utilize the header as a swather as well as a straight cut header while attached to the combine. The swath will be delivered to the right side of the combine. Normal header functions are basically the same as outlined previously in this manual. Three draper decks are required for the swath option.

The operator should consider disengaging the threshing unit on his combine if the unit is going to be used for a prolonged swathing operation. Consult Combine Owners Manual for proper disengagement procedure.

Manual Swath Option (3 decks)

The manual swath option permits the operator to slide the right hand deck over the center draper on the header. The swath opening, on the right hand end of the header, will therefore be the same width as the center opening was previously.

1. Unbolt deck restrainer bar from the deck to be shifted.
2. Locate the shift valve on the right hand side of the header frame. Shifting the lever past the neutral position all the way over to swath position will reverse the direction of the draper on the deck to the right of center and stop the center canvas from turning.

Remove the auger drive line between the chain case drive and the auger drum assembly. Store the drive line in a convenient location.
3. Before sliding the right hand deck, check the extension of the fingers on the center auger to make sure they will not interfere with the rear of the deck as it slides in front of the auger. It may be necessary to withdraw the fingers with the timing plate. (See the Center Auger section of this manual.) To allow more clearance between the auger finger drum and the shifted deck, the top link can be extended.

4. Manually slide the deck to the left until it meets the right hand end of the deck on the left side of the header. The shifted deck will cover the center draper opening. Allow approximately 1 1/2” (38mm) of clearance between decks. If slats on the canvas contact each other, open the distance between the decks.

5. Reconnect restrainer bar to the shifted deck.

6. Check all hose clearances on hydraulic motors after shifting the deck to ensure that they are not pinched, kinked, or stretched.

7. Start combine and engage feeder house drive. Check draper tracking and adjust if required. See Canvas Adjustment section of this manual for assistance.

8. With the swath option, the swath will be delivered to the left hand side of the right strut.

Draper Extension for Swathing

The Grain Belt Header has a delivery opening of approximately 60 inches. When swathing in light crop conditions, it may be necessary to narrow the opening width in order to lay a tight swath. An option for this requirement is the 14 inch deck extension kit, which is installed on the idler end of a deck.

The Extension deck can be added to either deck. Right hand side installation is shown below.

1. Remove the Draper connector bar and open the canvas to reveal the idler roller.

2. Remove the nut and washer that secure the idler plate.

3. Remove the idler plate, idler roller, and fixed end.

4. Install the 14” back panel to the 14” extension deck.

5. Install extension deck and back panel onto the end of the deck being extended.

6. Install the front connector and the rear deck connector.

7. Install the Idler plate, idler roller, and fixed end.

8. Join the 30” draper extension to the regular draper with a second connector bar.

9. Wrap canvas around the rollers and connect ends together with the other connector bar.

10. Adjust draper tension and tracking.
AGCO Bezels

The AGCO style of auger adapter provides a series of bezel layouts. These adapters are needed to match your new header to the opening of the feeder house on your combine.

<table>
<thead>
<tr>
<th>Combine</th>
<th>Model</th>
<th>Lateral Tilt</th>
<th>Non Lateral Tilt</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gleaner</td>
<td>R75/65/72/62</td>
<td>Layout 2</td>
<td>Layout 1</td>
<td>62/72 if equipped with removeable indexing blocks.</td>
</tr>
<tr>
<td></td>
<td>C62</td>
<td>N/A</td>
<td>Layout 5</td>
<td>Use 3/16 tab as spacer at top of web.</td>
</tr>
<tr>
<td></td>
<td>A65</td>
<td>Layout 3</td>
<td>Layout 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A85/75</td>
<td>Layout 4</td>
<td>Layout 4</td>
<td>Use 3/16 tab as spacer at top of web.</td>
</tr>
<tr>
<td>Massey Ferguson</td>
<td>9790/9895</td>
<td>Layout 4</td>
<td>Layout 4</td>
<td>Use 3/16 tab as spacer at top of web.</td>
</tr>
<tr>
<td></td>
<td>9690</td>
<td>Layout 3</td>
<td>Layout 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8780 V</td>
<td>Layout 3</td>
<td>Layout 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8780 XP/W</td>
<td>Layout 3</td>
<td>Layout 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8570</td>
<td>N/A</td>
<td>Layout 6</td>
<td>Cut end off guides and drill new inner hole to place as shown.</td>
</tr>
<tr>
<td></td>
<td>8680</td>
<td>N/A</td>
<td>Layout 5</td>
<td>Use 3/16 tab as spacer at top of web.</td>
</tr>
<tr>
<td>Challenger</td>
<td>670/680B</td>
<td>Layout 4</td>
<td>Layout 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>660</td>
<td>Layout 3</td>
<td>Layout 3</td>
<td></td>
</tr>
</tbody>
</table>

Configuring the AGCO Bezels

Refer to the following diagram to familiarize yourself with the appearance of the key components:

1. Guide Plate (includes a portion bent back at 90 degrees.)
2. The First Bezel.
3. The Second Bezel.
4. Web (extends backward from the bezels at 90 degrees.)

In addition, there are long and short sections of flat-bar used to reinforce connections.

Only the left side is shown here.
Bezel Configuration

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Components Used</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layout #1</td>
<td>1,2,3,4</td>
<td>The guide plates, (#1) are positioned using the innermost holes, as seen in the main diagram.</td>
</tr>
<tr>
<td>Layout #2</td>
<td>1,2,3,4</td>
<td>The guide plates, (#1) are moved outward exposing one hole on the inner side.</td>
</tr>
<tr>
<td>Layout #3</td>
<td>3,4</td>
<td>The guide plates, (#1) and the first bezel (#2) are removed. Reposition the web so that the vertical portion is midway on the remaining bezel.</td>
</tr>
<tr>
<td>Layout #4</td>
<td>4</td>
<td>The web is positioned in the innermost top and bottom holes, with one short support bar, used as a spacer, at the top of each web.</td>
</tr>
<tr>
<td>Layout #5</td>
<td>4</td>
<td>The web is positioned in the outermost top and bottom holes, with one short support bar, used as a spacer, at the top of each web.</td>
</tr>
<tr>
<td>Layout #6</td>
<td>1,2,3,4</td>
<td>The guide plate is positioned using the extreme outer holes, and the portion extending beyond the adapter's outer edge is trimmed off. All other components are as shown in the main diagram.</td>
</tr>
</tbody>
</table>

NOTE!

Hydraulic Tilt - Illustration A - Page 107

The Grain Belt Header has an optional hydraulic control system for the header tilt function. Be sure you provide detailed information about your header when ordering, since there are numerous mounting systems that are specific to the exact model, and year of header.

Main variations involve:

1. The type of reel, single or split,
2. The width of the header,
3. The make and model of combine, and
4. The model of combine adapter.

The basic kit includes all components required, including appropriate wiring adapters if required, and installation instructions.

It is recommended that this option be installed by a qualified Honey Bee dealer.
Troubleshooting

Common Problems You May Encounter

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Common Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Hydraulic Pressures</td>
<td>Cold Oil, Sticky Draper, Sticky or Tight Knife, Draper Too Tight</td>
</tr>
<tr>
<td>Reel Will Not Raise</td>
<td>Low Oil Volume from Combine, Defective Cylinders, Line Restriction, Quick Couplers Not Tight</td>
</tr>
</tbody>
</table>

Troubleshooting Checklist

<table>
<thead>
<tr>
<th>PROBLEM</th>
<th>POSSIBLE CAUSE</th>
<th>SOLUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reel</td>
<td>Leaking hose or fitting, Valve in Combine leaking</td>
<td>Repair or replace. See Combine Manual</td>
</tr>
<tr>
<td></td>
<td>Repair or replace.</td>
<td></td>
</tr>
<tr>
<td>Reel</td>
<td>Reel will not hold level.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Leaking hose or fitting, Air in system, Faulty master cylinder, Leaking cylinder seal.</td>
<td>Repair or replace. Replace seal.</td>
</tr>
<tr>
<td>Reel</td>
<td>Reel raises/lowers erratically.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reel cylinders binding, Arms bent or binding, Low hydraulic oil.</td>
<td>Replace cylinder. Repair or replace. See Combine Manual.</td>
</tr>
<tr>
<td>Reel</td>
<td>Reel will not raise.</td>
<td></td>
</tr>
<tr>
<td>Reel</td>
<td>Reel raises slowly</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elbow in master cylinder too tight, Hydraulic couplers not engaged</td>
<td>Loosen fitting, Re-couple properly.</td>
</tr>
<tr>
<td>Damage to center of reel</td>
<td>Reel set to low</td>
<td>Advance setting</td>
</tr>
<tr>
<td>Reel hitting at end</td>
<td>Reel not centered</td>
<td>Adjust centering</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PROBLEM</th>
<th>POSSIBLE CAUSE</th>
<th>SOLUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reel</td>
<td>Reel will not turn/turns erratically</td>
<td>Flow control set too low.</td>
</tr>
<tr>
<td></td>
<td>Drive coupler not engaged</td>
<td>Draper flow set too high.</td>
</tr>
<tr>
<td></td>
<td>Reel Tied Down.</td>
<td>Faulty relief valve. Seized bearing(s).</td>
</tr>
<tr>
<td>Reel</td>
<td>Reel Speed cannot be adjusted. - Header driven reel</td>
<td>Poor connection in electrical wires or cable.</td>
</tr>
<tr>
<td></td>
<td>Faulty reel speed motor.</td>
<td>Check connections and condition of cable.</td>
</tr>
<tr>
<td>Single Reel</td>
<td>Reel will not raise level.</td>
<td>Air in system.</td>
</tr>
<tr>
<td>Right side goes up slowly.</td>
<td>Air in system. Restricted hydraulic hose or fitting.</td>
<td>Bleed slave cylinder. Replace hose or fitting.</td>
</tr>
<tr>
<td>Left side goes up slowly.</td>
<td>Faulty master piston seal.</td>
<td>Repair or replace.</td>
</tr>
<tr>
<td>Left side will not raise or fully extend.</td>
<td>Faulty master cylinder, Faulty bypass port, Faulty master cylinder piston seal.</td>
<td>Replace cylinder. Replace cylinder. Replace seals.</td>
</tr>
<tr>
<td>PROBLEM</td>
<td>POSSIBLE CAUSE</td>
<td>SOLUTION</td>
</tr>
<tr>
<td>---------</td>
<td>----------------</td>
<td>----------</td>
</tr>
<tr>
<td>Single Reel – 36’</td>
<td>Reel will not raise.</td>
<td>Quick couplers to combine reel drive not connected.</td>
</tr>
<tr>
<td>Double Reel</td>
<td>Reel does not raise level.</td>
<td>Air in system.</td>
</tr>
<tr>
<td></td>
<td>Right side goes up slowly.</td>
<td>Air in system.</td>
</tr>
<tr>
<td></td>
<td>Right side cylinder does not fully extend</td>
<td>Air in system.</td>
</tr>
<tr>
<td></td>
<td>Lift cylinders out of phase.</td>
<td>Unbalanced hydraulic displacement.</td>
</tr>
<tr>
<td></td>
<td>Ends lift before center.</td>
<td>Center master cylinder “O” ring damaged.</td>
</tr>
<tr>
<td>Knife</td>
<td>Knife will not run.</td>
<td>Low hydraulic oil. Faulty drive motor Faulty knife drive. Faulty hydraulic pump. Cutter bar jammed.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PROBLEM</th>
<th>POSSIBLE CAUSE</th>
<th>SOLUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knife running too slow or too fast. (Correct Range: 600-700 rpm)</td>
<td>Low oil level Relief valve stuck open. Worn pump or knife motor Wrong pump for combine.</td>
<td>Add oil. Determine cause. Clean or replace cartridge. Repair or replace. Check with manufacturer.</td>
</tr>
<tr>
<td>Excessive noise</td>
<td>Loose or damaged sections and/or guards. First guard bent or out of alignment. Knife drive bearing faulty Knife drive loose. Knife drive running too fast. Knife head adjusted too high or too low. Guards don’t match.</td>
<td>Replace or tighten. Straighten or replace. Replace. Tighten bolts and check for damage to housing. Slow down to 600-700 rpm. Loosen clamp bolt on knife head bearing and adjust. Check that all guards are the same. 12mm required.</td>
</tr>
<tr>
<td>Connector Bar Breaks</td>
<td>Damaged sections or guards Knife gummed up. Section bolts not tight. Sections on knife back installed on wrong side. Knife Guards are bent. Debris in joint between connector bar and knife back.</td>
<td>Repair or replace. Soak with diesel fuel. Tighten or replace. Remove sections, turn knife over and replace sections. Replace bent guards. Clean the contact point between connector bar and knife back.</td>
</tr>
<tr>
<td>Knife Head Breaks</td>
<td>Section bolts not tight Knife gummed up Damaged sections or guards Sickle sections dull Tough crop Knife drive running too fast Steel tines on reel hitting knife Guards don’t match</td>
<td>Tighten and/or replace bolts Soak with diesel fuel Repair and/or replace Replace sections Reduce ground-speed. Check speed with photo tach Raise Reel Check that all guards are the same. 12mm required</td>
</tr>
<tr>
<td>PROBLEM</td>
<td>POSSIBLE CAUSE</td>
<td>SOLUTION</td>
</tr>
<tr>
<td>---------</td>
<td>----------------</td>
<td>----------</td>
</tr>
<tr>
<td>Draper</td>
<td>Draper splice not cut straight</td>
<td>Re-punch connector bar holes in draper</td>
</tr>
<tr>
<td>Draper not tracking straight</td>
<td>Material building up on rollers Idler Roller is out of alignment. Drive Roller is restricted.</td>
<td>Clean rollers Adjust Idler Roller Ensure Drive Roller is free.</td>
</tr>
<tr>
<td>Draper slipping</td>
<td>Draper too loose Insufficient traction Draper is snagging</td>
<td>Adjust draper tension Roughen drive roller Check alignment</td>
</tr>
<tr>
<td>Draper not turning</td>
<td>Draper is snagged or caught</td>
<td>Check for interference Check alignment</td>
</tr>
<tr>
<td>Draper oil pressure in excess of 2800 psi</td>
<td>Material build up on rollers Faulty bearing in roller Faulty draper motor Bad Pump</td>
<td>Clean rollers Replace bearing Check motor temperature, check for oil leaking from seals Replace motor or pump</td>
</tr>
<tr>
<td>Decks</td>
<td>Decks creep sideways in the header</td>
<td>Install or replace bars.</td>
</tr>
<tr>
<td>Decks lift out of position</td>
<td>Deck is not locked under rear edge of cutter bar Hold down clips on back panels are loose or not installed</td>
<td>Tighten or replace</td>
</tr>
<tr>
<td>Decks will not shift</td>
<td>Decks or back panels jammed or binding</td>
<td>Check decks and clean out debris On hydraulic swath, to get more power to shift deck, remove one hose from draper deck motor, screw a plug onto the hose, cap the port on motor. Shift deck. Re-connect hoses to draper deck motor to run header.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PROBLEM</th>
<th>POSSIBLE CAUSE</th>
<th>SOLUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grain Heads shattering or breaking off</td>
<td>Reel speed too fast Ground speed too fast Crop too ripe</td>
<td>Reduce reel speed Reduce ground speed Cut early in morning or late at night when humidity is higher</td>
</tr>
<tr>
<td>Cut grain falling off cutter bar</td>
<td>Reel too high Table set too high</td>
<td>Lower reel Lower table</td>
</tr>
<tr>
<td>Does not pick up lodged crop</td>
<td>Table too high Reel too high Reel too far back Ground speed too fast for reel speed Crop lying too flat for guards to pick up</td>
<td>Lower table Lower reel Move reel forward Reduce ground speed or increase reel speed Install optional SCH Crop Lifters</td>
</tr>
<tr>
<td>Material builds up at ends of cutter bar</td>
<td>Pick up reel tines not sweeping crop off cutter bar</td>
<td>Bend the tines on end of reel to reach into the corners</td>
</tr>
<tr>
<td>Adapter</td>
<td>Combine will not hook into top of adapter</td>
<td>Header tilted back/forward too far Cutter bar side tire too low Feeder house adjustment on combine set wrong Sub frame not level with combine</td>
</tr>
<tr>
<td>Pump</td>
<td>Oil running hot Excessive oil going over relief Faulty pump or motors Draper too tight or not tracking</td>
<td>Clean or replace relief cartridge Repair or replace Adjust draper alignment</td>
</tr>
<tr>
<td>Pump vibrating</td>
<td>Faulty Universal Joint bearings</td>
<td>Repair or replace Align auger & pump drive</td>
</tr>
<tr>
<td>Leveling</td>
<td>Header not level (See “Leveling” on page 31)</td>
<td>Leveling bolts out of adjustment</td>
</tr>
<tr>
<td>Table Angle</td>
<td>Draper too flat or steep Turnbuckle misadjusted</td>
<td>Adjust turnbuckle</td>
</tr>
<tr>
<td>Table Bounce</td>
<td>Suspension feels soft Clamp plates on spring saddles are loose</td>
<td>Tighten clamp plates for stiffer suspension</td>
</tr>
</tbody>
</table>
PROBLEM POSSIBLE CAUSE SOLUTION

<table>
<thead>
<tr>
<th>PROBLEM</th>
<th>POSSIBLE CAUSE</th>
<th>SOLUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sub frame</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Too close to the ground with cutter bar down. See “Leveling” on page 31</td>
<td>Leveling adjustment bolts too tight Turnbuckle/ hydraulic tilt adjusted too short</td>
<td>Loosen bolts Lengthen as needed</td>
</tr>
<tr>
<td>Header</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Header will not lift</td>
<td>Combine lift capacity Add a hydraulic cylinder to feeder house</td>
<td>Check system pressure See Combine Manual</td>
</tr>
<tr>
<td>Oil leaking between pump</td>
<td>Faulty Silicone seal</td>
<td>Re-seal pump</td>
</tr>
<tr>
<td>Center Deck</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Center draper not turning</td>
<td>Center draper too loose Faulty drive motor Failed bearing(s) in idler or drive rollers Material buildup on rollers Foreign material under draper</td>
<td>Adjust draper tension Repair or replace Repair or replace Clean rollers Clean under draper</td>
</tr>
<tr>
<td>Center draper slipping</td>
<td>Center draper too loose Insufficient traction</td>
<td>Adjust draper tension Roughen drive roller</td>
</tr>
<tr>
<td>Center draper not tracking straight</td>
<td>Drive or idler rollers out of alignment Draper splice not cut straight Material buildup on rollers</td>
<td>Adjust draper tracking Re-punch connector bar holes in draper Clean rollers</td>
</tr>
<tr>
<td>Feed Auger</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Auger stops when full of material</td>
<td>Auger drive clutch is slipping Improper pan inserts are used Clamp Plates too loose/tight</td>
<td>Check and set preload on drive assembly clutch (Torque to 885 ft-lb (1200Nm)) Check and clean clutch disks and pressure plates Ensure that your feed auger has the proper pan inserts if they are required for your make and model. Adjust the clamp plates on the springs on the sub frame as described in “Leveling and Table Height Adjustment” on page 32</td>
</tr>
</tbody>
</table>

PROBLEM POSSIBLE CAUSE SOLUTION

<table>
<thead>
<tr>
<th>PROBLEM</th>
<th>POSSIBLE CAUSE</th>
<th>SOLUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material (straw) wrapping on auger</td>
<td>Reduce size of feeder house opening Indexing of fingers is incorrect Drum is too far forward</td>
<td>Remove outer fingers Install stripper bars in adapter Adjust finger indexing (timing).</td>
</tr>
<tr>
<td>Material will not feed under auger</td>
<td>Indexing of fingers is incorrect Auger drive is slipping Auger is not floating Fingers on drum not extending low enough</td>
<td>Adjust finger indexing (timing). Check drive assembly clutch Auger float seized or binding on side plates Adjust finger indexing (timing).</td>
</tr>
</tbody>
</table>
Appendix A - Hydraulic Fitting Naming Standards

There will be a number of different hydraulic fittings used in this manual. The naming standards can be a little confusing, however this section should clear up any questions you may have.

A standard 2 sided hydraulic fitting is named in the following format:
- #XX-#XX

The information on each side of the hyphen represents its respective end of the fitting. The ‘#’ is the size designation. The ‘X’ denotes the type of end on that side of the fitting, this information is divided into a prefix and a suffix. The prefix indicates either male or female, and the suffix indicates the type of connection.

A ‘T’ fitting will be named in the following format:
- #XX-#XX-#XX

The center set of characters describes the middle port on the ‘T’ fitting.

The size designations denote which fittings go together. For example, a 10FJ fitting will fit with a 10MJ fitting, but not a 12MJ.

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Suffix</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>M or F</td>
<td>J</td>
<td>JIC 37° flared connectors</td>
</tr>
<tr>
<td>M or F</td>
<td>F</td>
<td>Face Seal</td>
</tr>
<tr>
<td>M or F</td>
<td>P</td>
<td>Pipe Fitting</td>
</tr>
<tr>
<td>M or F</td>
<td>B</td>
<td>O-Ring Boss</td>
</tr>
<tr>
<td>F only</td>
<td>X</td>
<td>Swivel (no image shown)</td>
</tr>
<tr>
<td>M or F</td>
<td>STC</td>
<td>Snap To Connect</td>
</tr>
</tbody>
</table>

Hydraulic Fitting Types

Illustration A - Page 116

Illustration B - Page 116

Illustration C - Page 116

Illustration D - Page 116

Illustration E - Page 116

Illustration F - Page 116
Check Valve

Pressure Gauge

Strainer or Filter

Hydraulic Quick Disconnect/Coupler
(shown in disconnect)

Hydraulic Cylinder
– Double Acting

Hydraulic Cylinder
– Single Acting

Hydraulic Oil Flow – Uni-directional

Hydraulic Oil Flow - Bi-directional

Hydraulic Oil Flow – Bi-directional
(used in schematics where uni-directional is also present)

Uni-directional motor rotation

Appendix B-1 - 30' Single Pump - Hydraulic Deck

DECK-SHIFT
MOTOR
RIGHT
SHIFTING-DECK
MOTOR
DRAPER DRIVE
FEEDER DECK MOTOR
WITH CHECK VALVE

LEFT
DRAPER
DRIVE
MOTOR
CROSS-AUGER
MOTOR

3000 PSI
MAIN RELIEF
PUMP
STRAINER
GEARBOX
FILTER
LEFT KNIFE
DRIVE MOTOR

NOTES:
MY 2013 SINGLE PUMP 30 FT HYDRAULIC DECK
Appendix B-2 - 30' Single Pump - Hydraulic Deck - Header Driven Reel

Appendix B-3 - 36' Single Pump - Hydraulic Deck
Appendix B-4 - 36'-40'-42' Double Pump - Manual Deck

Appendix B-5 - Double Pump - Standard Deck - Cross Auger
Appendix B-8 - Fore & Aft Assembly - Solid Reel (w/Hydraulic Solenoid Kit)

Appendix B-9 - Fore & Aft Assembly - Split Reel (w/Hydraulic Solenoid Kit)
Appendix B-10 - Hydraulic Header Tilt Assembly

Appendix B-11 - Single Reel Drive - (Combine Driven)
Appendix B-12 - 18 to 36 ft - (Combine Driven)

Left Reel Motor
*(Reel rotation is opposite to hydraulic flow)

Right Reel Motor
*(Reel rotation is opposite to hydraulic flow)

Reel Motor Pressure

Reel Motor Return

Appendix B-13 - Single Reel Drive

Right Reel Motor
*(Reel rotation is opposite to hydraulic flow)

Canvas Drive Flow-Divider

Feeder Deck
*(See Canvas Drive)
Appendix B-14 - Double Reel Drive - 40 to 42 ft (Combine Driven)

Left Reel Motor *(Reel rotation is opposite to hydraulic flow)

Right Reel Motor *(Reel rotation is opposite to hydraulic flow)

Reel Motor Pressure Reel Motor Return

Appendix B-15 - Double Reel Drive - 18-36 ft

Left Reel Motor *(Reel rotation is opposite to hydraulic flow)

Right Reel Motor *(Reel rotation is opposite to hydraulic flow)

Canvas Drive Flow-Divider Canvas Drive Return

Feeder Deck [See Canvas Drive]
Appendix B-16 - Double Reel Drive - 40 - 42 ft

Canvas Drive
Flow-Divider

Feeder Deck *(See Canvas Drive)

Left Reel Motor
*(Reel rotation is opposite to hydraulic flow)

Right Reel Motor
*(Reel rotation is opposite to hydraulic flow)

Appendix B-17 - Solid Reel Lift Circuit with Single Reel Drive

Left Reel - Lift Cylinder (78A)

Right Reel - Lift Displacement Cylinder

Reel - Lift Pressure And Return (To/From Combine)

Reel Motor Return (To Combine)

Reel Motor Pressure (From Combine)
Appendix B-18 - Split Reel Lift Circuit

NOTE!

All weights are given in lbs/kg format.

<table>
<thead>
<tr>
<th>Model</th>
<th>SP25</th>
<th>SP30</th>
<th>SP36</th>
<th>SP40</th>
<th>SP42</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>25'</td>
<td>30'</td>
<td>36'</td>
<td>40</td>
<td>42</td>
</tr>
<tr>
<td>Weight</td>
<td>3417/1551</td>
<td>3952/1796</td>
<td>4205/1911</td>
<td>4669/2122</td>
<td>4812/2187</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>SP25</th>
<th>SP30</th>
<th>SP36</th>
<th>SP40</th>
<th>SP42</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pickup Reel Ull Universal – 5 Bat – Steel Teeth</td>
<td>650/296</td>
<td>805/366</td>
<td>980/446</td>
<td>1020/464</td>
<td>1072/478</td>
</tr>
<tr>
<td>Pickup Reel HCC ML – 6 Bat</td>
<td>645/293</td>
<td>725/330</td>
<td>900/409</td>
<td>998/454</td>
<td>1056/480</td>
</tr>
<tr>
<td>Transport Axle/ Hitch-tube Package</td>
<td>210/96</td>
<td>210/96</td>
<td>210/96</td>
<td>210/96</td>
<td>210/96</td>
</tr>
<tr>
<td>Gauge Wheel Package</td>
<td>136/62</td>
<td>125/57</td>
<td>125/57</td>
<td>125/57</td>
<td>125/57</td>
</tr>
</tbody>
</table>

| Knife Drive - Single | standard | standard | standard | N/A | N/A |
| Knife Drive - Double | optional | optional | optional | standard | standard |

NOTE!

Weight includes: header assembly c/w decks, sub frame, center deck, auger drive, pump mounting, hydraulic pump, hydraulic tank, and attached hydraulic components.

Above weights do not include swath options or double knife drives.
Combine Adapters

Includes: - complete feed auger adapter, latching hardware, drive lines, and hydraulic hose kit to the combine.

NOTE: The output speed of the feeder house shaft must be set to the recommended header input speed.

<table>
<thead>
<tr>
<th>Brand/Model</th>
<th>Weight lbs/kg</th>
<th>Header Input Shaft Speed - RPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Massey Ferguson 9690, 9790, 9895</td>
<td>804/366</td>
<td>625</td>
</tr>
<tr>
<td>Gleaner R Series (R65, R75), AS Series (A65, A75, A85)</td>
<td>770/350</td>
<td>625</td>
</tr>
<tr>
<td>Challenger 660, 670, 680B</td>
<td>770/350</td>
<td>625</td>
</tr>
<tr>
<td>Gleaner C Series</td>
<td>770/350</td>
<td>625</td>
</tr>
<tr>
<td>Massey Ferguson 8680, 8780W, 8780XP</td>
<td>770/350</td>
<td>625</td>
</tr>
<tr>
<td>John Deere: 9000 Series</td>
<td>785/351</td>
<td>500</td>
</tr>
<tr>
<td>CTS, CTSII, Contour Master 50 Series, 60 Series, 70 Series</td>
<td>770/350</td>
<td>500</td>
</tr>
<tr>
<td>Case IH: 1660, 1680, 1688 AFS Combines</td>
<td>680/309</td>
<td>575</td>
</tr>
<tr>
<td>Case IH: AFX 7010/8010</td>
<td>680/309</td>
<td>575</td>
</tr>
<tr>
<td>New Holland: TR/TX, CR/CX</td>
<td>680/309</td>
<td>575</td>
</tr>
<tr>
<td>Lexion: 400, 500 Series</td>
<td>782/355</td>
<td>770</td>
</tr>
</tbody>
</table>

Cross Augers

<table>
<thead>
<tr>
<th>Header Length</th>
<th>Center Auger Drum (lbs/kg)</th>
<th>Auger Extension x 2 (lbs/kg)</th>
<th>Total (lbs/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25’</td>
<td>98 / 44</td>
<td>n/a</td>
<td>98 / 44</td>
</tr>
<tr>
<td>30’</td>
<td>98 / 44</td>
<td>56 / 25</td>
<td>154 / 69</td>
</tr>
<tr>
<td>36’</td>
<td>98 / 44</td>
<td>88 / 40</td>
<td>186 / 84</td>
</tr>
<tr>
<td>40’</td>
<td>98 / 44</td>
<td>110 / 50</td>
<td>208 / 94</td>
</tr>
<tr>
<td>42’</td>
<td>98 / 44</td>
<td>120 / 55</td>
<td>218 / 99</td>
</tr>
<tr>
<td>45’</td>
<td>98 / 44</td>
<td>136 / 62</td>
<td>234 / 106</td>
</tr>
</tbody>
</table>

These weights only reflect the main components of the cross auger, small parts are not included.

Honey Bee Manufacturing Ltd.

Knife Drive
SCH epicyclic 3 5/16” stroke, hydraulically driven, 1200 - 1400 strokes per minute
(2 strokes = 1 RPM)

Cutting System
SCH Easy Cut, spring steel guards and bolted sections.

Draper
42” rubberized polyester, fiberglass reinforced slats, tie bar connectors.

Draper Speed
Adjustable flow control located on the header.

<table>
<thead>
<tr>
<th>AGCO</th>
<th>CAT</th>
<th>CNH</th>
<th>JOHN DEERE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knife Pump (ci)</td>
<td>1.77</td>
<td>1.37</td>
<td>1.94</td>
</tr>
<tr>
<td>Draper Pump (ci)</td>
<td>1.04</td>
<td>0.77</td>
<td>1.04</td>
</tr>
<tr>
<td>Knife Speed (rpm)</td>
<td>671</td>
<td>642</td>
<td>676</td>
</tr>
<tr>
<td>Draper Speed (rpm)</td>
<td>755</td>
<td>691</td>
<td>694</td>
</tr>
</tbody>
</table>

Center Deck/Draper
68” wide, single 68” draper. Speed adjustable independently from side draper (adjustable center draper speed is not available with header driven reel package).

Reel
Hydraulically driven using combine hydraulics (or optional header hydraulics).

Reel Speed
Adjustable in cab.

Header Flotation
Lateral and vertical leaf spring float system.

Cutting Angle
Manually adjustable on all models.

Warning light kit.
SP21, SP25, SP30, SP36, SP40, and SP42 - center mounted on feeder housing.

These specifications are subject to change without notice or obligation.
Options:
- Pickup Reel - 5 bat, 42" diameter Universal U-II Pickup Reel, wire or plastic fingers.
- Pickup Reel - 6 bat, 44" diameter HCC ML Pickup Reel, plastic fingers.
- Storage Transport Axle.
- Hitch Kit.
- Tire assemblies P225 x 75R 15 tires.
- Castering Gauge Wheels - compression spring carriers.
- Poly Skid Plate on cutter bar and skid shoes.
- Cross auger.
- Swath Delivery Kits.
 - Model SP 36, SP40 & SP42 – delivery to the right hand side of the combine, (3rd deck combination required).
 - Model SP18, SP21, SP25, and SP30 – Not available.
 - Crop lifters for cereals and/or specialty crops.
 - Combine adapter: Available for most models for self propelled combines
 - John Deere
 - Case IH
 - Gleaner
 - Massey Ferguson
 - Claas
 - New Holland

Rice Belt Header
The “Rice Belt” header has been modified specifically for harvesting rice. Standard features and specifications include:
- Center mounting.
- High torque, dual hydraulic direct reel drive motors.
- Vulcanized rubber drive rollers of the lateral draper decks.
- Stainless steel lining in the auger adapter.
- Poly skid plate on the cutter bar.
- Levee shields.

<table>
<thead>
<tr>
<th>MODEL</th>
<th>SP21R</th>
<th>SP25R</th>
<th>SP30R</th>
<th>SP30R</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIZE</td>
<td>21'</td>
<td>25'</td>
<td>30'</td>
<td>36'</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>3159/1436</td>
<td>3357/1525</td>
<td>TBA</td>
<td>TBA</td>
</tr>
</tbody>
</table>

Rice Belt Header

Pickup Reel Assemblies:

U-II Universal
6 Bat, 42” diameter, wire or plastic fingers, includes mounting hardware.

HCC
6 Bat, 44” diameter, plastic fingers, includes mounting hardware.

All weights are given in lbs/kg format.

<table>
<thead>
<tr>
<th></th>
<th>U-II Universal</th>
<th>HCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>WEIGHT</td>
<td>550/250</td>
<td>450/205</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>628/285</td>
<td>528/240</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>705/320</td>
<td>645/293</td>
</tr>
</tbody>
</table>

Bolt Torque
The tables shown below give correct torque values for various bolts and cap screws. Tighten all bolts to the torques specified in chart unless otherwise noted. Check tightness of bolts periodically, using bolt torque chart as a guide. Replace hardware with the same strength bolt.

<table>
<thead>
<tr>
<th>Unified Torque Specifications</th>
<th>Metric Torque Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size SAE 5</td>
<td>Size 8.8</td>
</tr>
<tr>
<td>Nm(lb-ft)</td>
<td>Nm(lb-ft)</td>
</tr>
<tr>
<td>1/4" 12(9)</td>
<td>17(12)</td>
</tr>
<tr>
<td>5/16" 25(19)</td>
<td>36(27)</td>
</tr>
<tr>
<td>3/8" 45(33)</td>
<td>63(45)</td>
</tr>
<tr>
<td>7/16" 72(53)</td>
<td>100(75)</td>
</tr>
<tr>
<td>1/2" 110(80)</td>
<td>155(115)</td>
</tr>
<tr>
<td>9/16" 155(115)</td>
<td>220(165)</td>
</tr>
<tr>
<td>5/8" 215(160)</td>
<td>305(220)</td>
</tr>
<tr>
<td>3/4" 390(290)</td>
<td>540(400)</td>
</tr>
<tr>
<td>7/8" 570(420)</td>
<td>880(650)</td>
</tr>
<tr>
<td>1" 915(675)</td>
<td>1320(970)</td>
</tr>
</tbody>
</table>

Torque figures indicated above are valid for non-greased or non-oiled threads and heads. Do not grease or oil bolts or cap screws unless otherwise specified in this manual. When using locking elements, increase torque values by 5%.

NOTE!
Tightening - Flare-type Tube Fittings
1. Check flare and flare seat for defects that might cause leakage.
2. Align tube with fitting before tightening.
3. Lubricate connection and hand tighten swivel nut until snug.
4. To prevent twisting the tube(s), use two wrenches. Place one on the connector body, and with the other, tighten the swivel nut to the torque shown.

Hydraulic Fitting Torque Table

<table>
<thead>
<tr>
<th>Tube Size OD</th>
<th>Nut Size</th>
<th>Torque Value **</th>
<th>Turns to Tighten (After Finger-Tightening)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(in.)</td>
<td>(in.)</td>
<td>(Nm)</td>
<td>(lb-ft)</td>
</tr>
<tr>
<td>3/16</td>
<td>7/16</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>1/4</td>
<td>9/16</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>5/16</td>
<td>5/8</td>
<td>16</td>
<td>12</td>
</tr>
<tr>
<td>3/8</td>
<td>11/16</td>
<td>24</td>
<td>18</td>
</tr>
<tr>
<td>1/2</td>
<td>7/8</td>
<td>46</td>
<td>34</td>
</tr>
<tr>
<td>5/8</td>
<td>1</td>
<td>82</td>
<td>46</td>
</tr>
<tr>
<td>3/4</td>
<td>1-1/4</td>
<td>102</td>
<td>75</td>
</tr>
<tr>
<td>7/8</td>
<td>1-3/8</td>
<td>122</td>
<td>90</td>
</tr>
</tbody>
</table>

The torque values shown are based on lubricated connections as in reassembly.

Tightening O-ring Fittings
Inspect O-ring and seat for dirt or obvious defects.
On angle fittings, back the lock nut off until washer bottoms out at top of groove.
Tighten fitting by hand until back-up washer or washer face (if straight fitting) bottoms on face and O-ring is seated.
Position angle fittings by unscrewing no more than one turn.
Tighten straight fittings to torque shown.
Tighten angle fittings to torque showing while holding body of fitting with a wrench.

The torque values shown are based on lubricated connections as in reassembly.